화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.13, 1204-1210, December, 2020
Waste Sawdust-Derived Nanoporous Carbon as a Positive Electrode for Lithium-Ion Storage
E-mail:
Sustainable resources, particularly those induced from bio-derived waste materials, can be transformed into useful nanocarbon materials with high functionality. In this study, nanoporous carbon materials (N-CMs) were fabricated from waste sawdust using a simple heating process and a carefully controlled activation process. The waste-induced N-CMs had a high specific surface area of ~3044.6 m2 g-1, a nanoporous structure, and > 6 at.% heteroatoms. These properties led to high electrochemical performance with a specific capacity of ~298 mAh g-1 and excellent cycling stability over 2,000 cycles as a cathode in lithium-ion storage. Moreover, when the N-CMs were assembled with a nanostructured carbon-based anode, all full carbon- based cells could deliver high specific energy and specific power of ~377 Wh kg-1 and ~20,247 W kg-1, respectively, with a long-term cycle life of more than 1,000 cycles.
  1. Larcher D, Tarascon JM, Nat. Chem., 7, 19 (2015)
  2. Nitta N, Wu FX, Lee JT, Yushin G, Mater. Today, 18, 252 (2015)
  3. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  4. Canepa P, Gautam GS, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G, Chem. Rev., 117(5), 4287 (2017)
  5. Aurbach D, McCloskey BD, Nazar LF, Bruce PG, Nat. Energy, 1, 16128 (2016)
  6. Manthiram A, Chung SH, Zu CX, Adv. Mater., 27(12), 1980 (2015)
  7. Xie ZJ, Zhang X, Zhang Z, Zhou Z, Adv. Mater., 29, 160589 (2017)
  8. Xu W, Wang JL, Ding F, Chen XL, Nasybutin E, Zhang Y, Zhang JG, Energy Environ. Sci., 7, 513 (2014)
  9. Goodenough JB, Kim Y, Chem. Mater., 22, 587 (2010)
  10. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D, Energy Environ. Sci., 4, 3243 (2011)
  11. Whittingham MS, Chem. Rev., 104(10), 4271 (2004)
  12. Fergus JW, J. Power Sources, 195(4), 939 (2010)
  13. Manthiram A, J. Phys. Chem. Lett., 2, 176 (2011)
  14. Chen D, Tang LH, Li JH, Chem. Soc. Rev., 39, 3157 (2010)
  15. Dai LM, Chang DW, Baek JB, Lu W, Small, 8, 1130 (2012)
  16. Karuppasamy K, Theerthagiri J, Vikraman D, Yim CJ, Hussain S, Sharma R, Maiyalagan T, Qin J, Kim HS, Polymers, 12, 918 (2020)
  17. Wang X, Liu L, Niu Z, Mater. Chem. Front., 3, 1265 (2019)
  18. Vikraman D, Hussain S, Prasanna K, Karuppasamy K, Jung J, Kim HS, J. Electroanal. Chem., 833, 333 (2019)
  19. Bartkus TP, T'ien JS, Sung CJ, Int. J. Hydrog. Energy, 38(10), 4024 (2013)
  20. Hu B, Wang K, Wu LH, Yu SH, Antonietti M, Titirici MM, Adv. Mater., 22(7), 813 (2010)
  21. Wang JC, Kaskel S, J. Mater. Chem., 12, 23710 (2012)
  22. Kim NR, An HJ, Yun YS, Jin HJ, Carbon Lett., 12, 110 (2017)
  23. Gaddam RR, Yang DF, Narayan R, Raju KVSN, Kumar NA, Zhao XS, Nano Energy, 26, 346 (2016)
  24. Campbell B, Ionescu R, Favors Z, Ozkan CS, Ozkan M, Sci. Rep., 5, 14575 (2015)
  25. Zheng P, Liu T, Zhang JZ, Zhang LF, Liu Y, Huang JF, Guo SW, RSC Adv., 5, 40737 (2015)
  26. Yun YS, Kim DH, Hong SJ, Park MH, Park YW, Kim BH, Jin HJ, Kang K, Nanoscale, 7, 15051 (2015)
  27. Dumanli AG, Windle AH, J. Mater. Sci., 47(10), 4236 (2012)
  28. Yun YS, Bak H, Jin HJ, Synth. Met., 160, 561 (2010)
  29. Kim NR, Lee SM, Kim MW, Yoon HJ, Hong WG, Kim HJ, Choi HJ, Jin HJ, Yun YS, Adv. Eng. Mater., 7, 170062 (2017)
  30. Adelowo E, Baboukani AR, Chen C, Wang C, C-J Carbon Res., 4, 31 (2018)
  31. Lu Q, Lu B, Chen MF, Wang XY, Xing T, Liu MH, Wang XY, J. Power Sources, 398, 128 (2018)
  32. Lee SH, John C, Grant PS, ACS Appl. Mater. Interfaces, 11, 37859 (2019)
  33. Yang Y, Lin Q, Ding B, Wang J, Malgras V, Jiang J, Li Z, Chen S, Dou H, et al., Carbon, 167, 627 (2020)
  34. Zhang SJ, Li C, Zhang X, Sun XZ, WAng K, Ma YW, ACS Appl. Mater. Interfaces, 9, 17136 (2017)
  35. Xia QY, Yang H, Wang M, Yang M, Guo QB, Wan LM, Xia H, Yu Y, Adv. Eng. Mater., 7, 170133 (2017)
  36. Wang HW, Guan C, Wang XF, Fan HJ, Small, 11, 1470 (2015)