화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.1, 195-203, January, 2021
Unfavorable energy integration of reactive dividing wall column for simultaneous esterification reactions
E-mail:
Thermal integration in a reactive dividing wall column (RDWC) can dramatically reduce energy consumption. This study, however, addresses unfavorable energy integration of the concurrent esterification of butyl, amyl, and hexyl alcohols in the RDWC. The reaction kinetics and vapor-liquid-liquid equilibrium of reactive mixtures are utilized to assess the feasibility of energy integration in a multi-partitioned RDWC. The thermal integration effect of an RDWC is elucidated by comparing its energy efficiency with that of the direct sequential configuration of a reactive distillation column followed by a non-reactive distillation column. The unfavorable thermal integration in the RDWC originates from the large internal flow to satisfy the product purities. Therefore, a single RDWC sequence showed higher energy consumption and total annual cost than the direct RD sequence for the simultaneous triple esterification.
  1. Stankiewicz AI, Moulijn JA, Chem. Eng. Prog., 96(1), 22 (2000)
  2. Novita FJ, Lee HY, Lee MY, Korean J. Chem. Eng., 35(4), 926 (2018)
  3. Kang D, Lee JW, Appl. Catal. B: Environ., 186, 41 (2016)
  4. Long NVD, Lee S, Lee M, Chem. Eng. Process. Process Intensif., 49, 825 (2010)
  5. Malone F, Doherty MF, Ind. Eng. Chem. Res., 39, 3953 (2000)
  6. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1953 (2000)
  7. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1965 (2000)
  8. Im HJ, Park JI, Lee JW, Korean J. Chem. Eng., 36(10), 1680 (2019)
  9. Lee JW, Ko YC, Jung YK, Lee KS, Yoon ES, Comput. Chem. Eng., 21, S1105 (1997)
  10. Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81(1), 162 (2003)
  11. Qasim F, Shin JS, Park SJ, Korean J. Chem. Eng., 35(5), 1185 (2018)
  12. Lee JW, Westerberg AW, AIChE J., 47(6), 1333 (2001)
  13. Hiwale RS, Bhate NV, Mahajan YS, Mahajani SM, Int. J. Chem. React. Eng., 2, 1 (2004)
  14. Navarro MA, Javaloyes J, Caballero JA, Grossmann IE, Comput. Chem. Eng., 36, 149 (2012)
  15. Yildirim O, Kiss AA, Kenig EY, Sep. Purif. Technol., 80(3), 403 (2011)
  16. Namgung K, Lee H, Jang W, Mo H, Lee JW, Chem. Eng. Process. Process Intensif., 154, 108048 (2020)
  17. Mueller I, Kenig EY, Ind. Eng. Chem. Res., 46(11), 3709 (2007)
  18. Kang D, Lee JW, Ind. Eng. Chem. Res., 54(12), 3175 (2015)
  19. Lee HC, Jang WJ, Lee JW, Korean J. Chem. Eng., 36(6), 954 (2019)
  20. Li HS, Li T, Li CL, Fang J, Dong LH, Chin. J. Chem. Eng., 27(1), 136 (2019)
  21. Kiss AA, Suszwalak DJPC, Comput. Chem. Eng., 38, 74 (2012)
  22. Zheng L, Cai WF, Zhang XB, Wang Y, Chem. Eng. Process., 111, 127 (2017)
  23. Jiang W, Lee H, Han JI, Lee JW, Ind. Eng. Chem. Res., 58(19), 8206 (2019)
  24. Jang W, Namgung K, Lee H, Mo H, Lee JW, Ind. Eng. Chem. Res., 59(5), 1966 (2020)
  25. Lee MJ, Wu HT, Lin HM, Ind. Eng. Chem. Res., 39(11), 4094 (2000)
  26. Schmitt M, Hasse H, Ind. Eng. Chem. Res., 45(12), 4123 (2006)
  27. Wu YC, Lee HY, Lee CH, Huang HP, Chien IL, Ind. Eng. Chem. Res., 52(48), 17184 (2013)
  28. Lee HY, Yen LT, Chien IL, Huang HP, Ind. Eng. Chem. Res., 48(15), 7186 (2009)
  29. Mutalib MIA, Smith R, Chem. Eng. Res. Des., 76(3), 308 (1998)
  30. Luyben WL, Distillation design and control using aspen simulation, John Wiley & Sons, Hoboken, New Jersey (2013).