화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.91, 129-138, November, 2020
Effect of pore texture property of mesoporous alumina on adsorption performance of ammonia gas
E-mail:
We report that the adsorption of ammonia gas on the synthesized mesoporous alumina (MA) with the controlled pore texture properties were measured. The MA adsorbents with controlled pore properties were synthesized by the Evaporation Induced Self Assembly (EISA) method. It was found that the pore size, and surface area could be adjusted by changing the mole ratio of the acid to alumina precursor during the preparation procedure. When the MA materials were used as adsorbents on ammonia gas adsorption, both adsorption kinetics and capacity were highly influenced by the pore texture properties. Pseudo first order that adsorption kinetic constant and the effective diffusivities of alumina adsorbents decreased with decreasing pore size or increasing surface area, while adsorption capacities increased. In order to estimate the adsorption behavior of ammonia gas, the Langmuir, Freundlich, Sips, and Toth isotherm models were employed. Langmuir model-based calculation reveals that mesoporous alumina MA-1.1 adsorbent with a large surface area and a small pore size shows the best performance in terms of the calculated maximum adsorption capacity of ammonia (193.57-mg/g), which is almost double that of other MA adsorbents (MA-3.3, MA-4.4) and 2.89 times that of commercial γ-Al2O3.
  1. Behera SN, Sharma M, Aneja VP, Balasubramanian R, Environ. Sci. Pollut. Res., 20, 8092 (2013)
  2. Montague TJ, Macneil AR, CHEST, 77, 496 (1980)
  3. Englund HM, Calvert S, Handbook of Air Pollution Technology, (1984).
  4. Netting J, Nature, 406, 928 (2000)
  5. Lin X, Ni J, Fang C, J. Appl. Phys., 113, 034306 (2013)
  6. Nicolaides CP, Kung HH, Makgoba NP, Sincadu NP, Scurrell MS, Appl. Catal. A: Gen., 223(1-2), 29 (2002)
  7. Helminen J, Helenius J, Paatero E, Turunen I, J. Chem. Eng. Data, 46, 391 (2001)
  8. Yeom C, Kim Y, Environ. Eng. Res., 22, 401 (2017)
  9. Schirmer W, Stach H, Fiedler K, Rudzinski W, Jagiello J, Zeolites, 3, 199 (1983)
  10. Britt D, Tranchemontagne D, Yaghi OM, Proc. Natl. Acad. Sci., 105, 11623 (2008)
  11. Rodrigues CC, de Moraes D, da Nobrega SW, Barboza MG, Bioresour. Technol., 98(4), 886 (2007)
  12. Feng X, Irle S, Witek H, Morokuma K, Vidic R, Borguet E, J. Am. Chem. Soc., 127(30), 10533 (2005)
  13. Saha D, Deng SG, J. Colloid Interface Sci., 345(2), 402 (2010)
  14. Huang CC, Li HS, Chen CH, J. Hazard. Mater., 159(2-3), 523 (2008)
  15. Le Leuch LM, Bandosz TJ, Carbon, 45, 568 (2007)
  16. Min JH, Kim YH, Kim JH, Choi SY, Lee JS, Kim HK, Mycobiology, 40, 138 (2012)
  17. Kim BJ, Park SJ, J. Colloid Interface Sci., 311(1), 311 (2007)
  18. Kim K, Shin C, Carbon Lett., 2, 109 (2001)
  19. Yi LC, Ken-ichi A, Bull. Chem. Soc. Jpn., 76, 1463 (2003)
  20. Kapustin GI, Brueva TR, Thermochim. Acta, 379(1-2), 71 (2001)
  21. Saha D, Deng SG, J. Chem. Eng. Data, 55(12), 5587 (2010)
  22. Fulvio PF, Brosey RI, Jaroniec M, ACS Appl. Mater. Interfaces, 2, 588 (2010)
  23. Yang C, Gao L, Wang Y, Tian X, Komarneni S, Microporous Mesoporous Mater., 197, 156 (2014)
  24. Helfferich FG, AIChE J., 31, 523 (1985)
  25. Li P, Chen J, Feng W, Wang X, J. Iran. Chem. Soc., 11, 741 (2014)
  26. Fan HT, Sun W, Jiang B, Wang QJ, Li DW, Huang CC, Wang KJ, Zhang ZG, Li WX, Chem. Eng. J., 286, 128 (2016)
  27. Deng RJ, Shao R, Ren BZ, Hou B, Tang ZE, Hursthouse A, Pol. J. Environ. Stud., 28, 577 (2019)
  28. Mohan D, Rajput S, Singh VK, Steele PH, Pittman CU, J. Hazard. Mater., 188(1-3), 319 (2011)