Journal of Industrial and Engineering Chemistry, Vol.91, 85-92, November, 2020
Chain end-termination of p-polybenzimidazole by bulk segment for efficient electrochemical power generation and hydrogen separation
E-mail:
We investigated the effects of hydrogen separation using high-temperature anhydrous proton-exchange membrane fuel-cell technology. Various acid-doped para-polybenzimidazole (p-PBI)-chain end-tethered amine-polyhedral oligomeric silsesquioxane (NH2-POSS) membranes were prepared via a unique sol?gel transition method termed as the poly(phosphoric acid) process. The resulting NH2-POSS-capped p-PBI membranes exhibited a higher phosphoric acid-doping level (128-223.5%) and proton conductivity (0.23-0.29 S cm-1 at 160 °C and 0% relative humidity) than the parent p-PBI membrane. The chemical chain end-termination of p-PBI with cage-like NH2-POSS significantly enhanced the electrochemical H2/CO2 and H2/CO separation at 160 °C. The hydrogen separation of the NH2-POSS-capped p-PBI system required a relatively small amount of energy, and the system exhibited a good dynamic response. The favorable interfacial interaction between the NH2-POSS and the p-PBI host, high thermomechanical stability, and good fuel-cell and hydrogen-separation performance at high temperatures up to 160 °C indicate the applicability of the NH2-POSS-capped p-PBI membranes to electrochemical power generation and hydrogen pumps for practical industrial applications in harsh and extreme environments.
Keywords:Acid-doped polybenzimidazole;Sol-gel transition;Chain end-termination;Nanohybrid membrane;Fuel cell;Electrochemical hydrogen separation
- Maget HJR, US Pat. (1970); US3489670A.
- Kreuer KD, Chem. Mater., 8, 610 (1996)
- Pasierb P, Rekas M, Int. J. Electrochem., 2011, 1 (2011)
- Li Q, Aili D, Hjuler HA, Jensen JO, High temperature polymer electrolyte membrane fuel cells, Springer, London, UK, 2016.
- Kim DJ, Jo MJ, Nam SY, J. Ind. Eng. Chem., 21, 36 (2015)
- Pan ZF, An L, Zhao TS, Tang ZK, Prog. Energy Combust. Sci, 66, 141 (2018)
- Lee S, Seo K, Ghorpade RV, Nam KH, Han H, Mater. Lett., 263, 127167 (2020)
- Huang F, Pingitore AT, Benicewicz BC, ACS Sustain. Chem. Eng., 8, 6234 (2020)
- Pan Z, Bi Y, An L, Appl. Energy, 258, 114060 (2020)
- You PY, Kamarudin SK, Chem. Eng. J., 309, 489 (2017)
- Angell CA, Electrochim. Acta, 250, 368 (2017)
- Schmidt-Rohr K, Chen Q, Nat. Mater., 7(1), 75 (2008)
- Ryu T,Sutradhar SC, Ahmed F, Choi K, Yang H, Yoon S, Lee S, Kim W, J. Ind. Eng. Chem., 49, 99 (2017)
- Yin C, Li J, Zhou Y, Zhang H, Fang P, He C, ACS Appl. Mater. Interfaces, 10, 14026 (2018)
- Strobel R, Oszcipok M, Fasil M, Rohland B, Jorissen L, Garche J, J. Power Sources, 105(2), 208 (2002)
- Gardner CL, Ternan M, J. Power Sources, 171(2), 835 (2007)
- Song JM, Woo HS, Sohn JY, Shin J, J. Ind. Eng. Chem., 36, 132 (2016)
- Li Q, He R, Jensen JO, Bjerrum NJ, Chem. Mater., 15, 4896 (2003)
- Zhao Y, Liu X, Li H, Zhai T, Zhou H, Chem. Commun., 42, 5079 (2012)
- Krishnana NN, Lee S, Ghorpade RV, Konovalova A, Jang JH, Kim HJ, Han J, Henkensmeier D, Han H, J. Membr. Sci., 560, 11 (2018)
- Won M, Kwon S, Kim TH, J. Ind. Eng. Chem., 29, 104 (2015)
- Zhang JL, Tang YH, Song CJ, Zhang JJ, J. Power Sources, 172(1), 163 (2007)
- Wu QX, Pan ZF, An L, Renew. Sust. Energ. Rev., 89, 168 (2018)
- Wang P, Liu Z, Li X, Peng J, Hu W, Liu B, Chem. Commun., 55, 6491 (2019)
- Kerres J, Ullrich A, Meier F, Haring T, Solid State Ion., 125(1-4), 243 (1999)
- Pu HT, Meyer WH, Wegner G, J. Polym. Sci. B: Polym. Phys., 40(7), 663 (2002)
- Li QF, He RH, Gao JA, Jensen JO, Bjerrum NJ, J. Electrochem. Soc., 150(12), A1599 (2003)
- Ma YL, Wainright JS, Litt MH, Savinell RF, J. Electrochem. Soc., 151(1), A8 (2004)
- Hogarth WHJ, da Costa JCD, Lu GQ, J. Power Sources, 142(1-2), 223 (2005)
- Wainright JS, Wang JT, Weng D, Savinell RF, Litt M, J. Electrochem. Soc., 142(7), L121 (1995)
- Li X, Ma H, Wang P, Liu Z, Peng J, Hu W, Jiang Z, Liu B, Guiver MD, Chem. Mater., 32, 1182 (2020)
- Chen X, Qian G, Molleo MA, Benicewicz BC, Ploehn HJ, J. Polym. Sci. B: Polym. Phys., 53, 1527 (2015)
- Seo K, Seo J, Nam KH, Han H, Polym. Compos., 38, 87 (2017)
- Li QF, Hjuler HA, Bjerrum NJ, J. Appl. Electrochem., 31(7), 773 (2001)
- Kongstein OE, Berning T, Borresen B, Seland F, Tunold R, Energy, 32(4), 418 (2007)
- Hsueh KL, Gonzalez ER, Srinivasan S, Electrochim. Acta, 28, 691 (1983)
- Gandini A, Cheradame H, Advances in polymer science, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- Schmidt TJ, Baurmeister J, J. Power Sources, 176(2), 428 (2008)
- Musto P, Karasz FE, MacKnight WJ, Polymer, 34, 2934 (1993)
- Kumar SB, Sana B, Unnikrishnan G, Jana T, Kumar SKS, Polym. Chem., 11, 1043 (2020)
- Muthuraja P, Prakash S, Susaimanickam A, Manisankar P, Int. J. Hydrog. Energy, 43(47), 21732 (2018)
- Liu Q, Ni N, Sun Q, Wu X, Bao X, Fan Z, Zhang R, Hu S, Zhao F, Li X, J. Wuhan Univ. Technol. Mater. Sci. Ed., 33, 212 (2018)
- Nam KH, Jin JU, Lee DH, Han H, Goh M, Yu J, Ku BC, You NH, Compos. Part B Eng., 163, 290 (2019)
- Leu CM, Reddy GM, Wei KH, Shu CF, Chem. Mater., 15, 2261 (2003)
- Huang JC, He CB, Xiao Y, Mya KY, Dai J, Siow YP, Polymer, 44(16), 4491 (2003)
- Han M, Zhang G, Liu Z, Wang S, Li M, Zhu J, Li H, Zhang Y, Lew CM, Na H, J. Mater. Chem., 21, 2187 (2011)
- Wang S, Zhang G, Han MM, Li HT, Zhang Y, Ni J, Ma WJ, Li MY, Wang J, Liu ZG, Zhang LY, Na H, Int. J. Hydrog. Energy, 36(14), 8412 (2011)
- Wang S, Zhao C, Ma W, Zhang N, Zhang Y, Zhang G, Liu Z, Na H, J. Mater. Chem. A, 1, 621 (2013)
- Samms SR, Wasmus S, Savinell RF, J. Electrochem. Soc., 143(4), 1225 (1996)
- Singha S, Jana T, Modestra JA, Kumar AN, Mohan SV, J. Power Sources, 317, 143 (2016)
- Menczel JD, J. Therm. Anal. Calorim., 59, 1023 (2000)
- Singha S, Jana T, ACS Appl. Mater. Interfaces, 6, 21286 (2014)
- Zhang N, Wang B, Zhao C, Wang S, Zhang Y, Bu F, Cui Y, Li X, Na H, J. Mater. Chem. A, 2, 13996 (2014)
- Serowy S, Saparov SM, Antonenko YN, Kozlovsky W, Hagen V, Pohl P, Biophys. J., 84, 1031 (2003)
- Barbir F, Gorgun H, J. Appl. Electrochem., 37(3), 359 (2007)