화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.12, 1116-1126, November, 2020
Effective Reinforcement of Melamine-functionalized WS2 Nanosheets in Epoxy Nanocomposites at Low Loading via Enhanced Interfacial Interaction
E-mail:
We present a two-dimensional tungsten disulfide (WS2)-based material as a reinforcement additive to produce thermally stable, mechanically strong, and light-weight epoxy (EP) composites. An aqueous melamine solution was used to exfoliate the bulk WS2 into nanosheets while simultaneously functionalizing them to obtain melamine-functionalized WS2 (N-WS2) nanosheets. These non-covalently functionalized N-WS2 nanosheets were used as toughening agents for epoxy composites. The contents of the N-WS2 nanosheets were maintained at below 1 wt%. The effect of functionalization on the interfacial properties of EP composites was investigated in terms of the interfacial interactions between the EP and the nanosheets. The results demonstrated that the surface free energy of EP composites increased significantly after the incorporation of N-WS2 nanosheets into the EP matrix and further increased with the increased loading of N-WS nanosheets up to a maximal value of 54.38 mJ-m2 for the composite containing 0.18 wt% N-WS2 nanosheets, suggesting a stronger interfacial interaction between the EP and N-WS2 nanosheets. A gradual decrease in the surface free energy of the EP composites was observed at higher loadings, which might be attributed to the aggregation of N-WS2 nanosheets within the matrix or excessive bonding of the sheets with one another rather than with the EP matrix due to their larger Van der Waals forces and their large surface area. The mechanical properties of the EP composites were analyzed and demonstrated 55%, 101%, 44%, and 15% improvements in the fracture toughness, fracture energy, flexural strength, and flexural modulus, respectively, for the composite containing 0.18 wt% N-WS2 nanosheets. Moreover, the composites displayed increased glass transition temperatures and better thermal stabilities.
  1. Kumar S, Falzon BG, Kun J, Wilson E, Graninger G, Hawkins SC, Compos. Part A Appl. Sci. Manuf., 131, 105801 (2020)
  2. Kang R, Zhang Z, Guo L, Cui J, Chen Y, Hou X, Wang B, Lin CT, Jiang N, Yu J, Sci. Rep., 9, 9135 (2019)
  3. Yuan D, Guo H, Ke K, Manas-Zloczower I, Compos. Pt. A-Appl. Sci. Manuf., 132, 105837 (2020)
  4. Seo J, Jang W, Han H, Macromol. Res., 15(1), 10 (2007)
  5. Shi H, Liu W, Yang M, Liu X, Xie Y, Wang Z, Macromol. Res., 27(4), 412 (2019)
  6. Zhu J, Peng HQ, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV, Adv. Funct. Mater., 14(7), 643 (2004)
  7. Hao LC, Li ZX, Sun F, Ding K, Zhou XN, Song ZX, Shi ZQ, Yang JF, Wang B, Compos. Pt. A-Appl. Sci. Manuf., 127, 105648 (2019)
  8. Chen J, Dong YJ, Jin FL, Park SJ, Macromol. Res., 27(1), 10 (2019)
  9. Di Berardino MF, Pearson RA, in Toughening of Plastics, American Chemical Society, Vol. 759, pp 213-229 2000.
  10. Liu L, Grunlan JC, Adv. Funct. Mater., 17(14), 2343 (2007)
  11. Chen L, Chai S, Liu K, Ning N, Gao J, Liu Q, Chen F, Fu Q, ACS Appl. Mater. Interfaces, 4, 4398 (2012)
  12. Yadav AK, Banerjee S, Kumar R, Kar KK, Ramkumar J, Dasgupta K, ACS Appl. Nano Mater., 1, 4332 (2018)
  13. Han NM, Wang Z, Shen X, Wu Y, Liu X, Zheng Q, Kim TH, Yang J, Kim JK, ACS Appl. Mater. Interfaces, 10, 6580 (2018)
  14. Vu CM, Bach QV, Macromol. Res., 28(9), 826 (2020)
  15. Malekshahinezhad K, Ahmadi-khaneghah A, Behniafar H, Macromol. Res., 28, 567 (2019)
  16. Wang Z, Yang M, Cheng Y, Liu J, Xiao B, Chen S, Huang J, Xie Q, Wu G, Wu H, Compos. Pt. A-Appl. Sci. Manuf., 118, 302 (2019)
  17. Hu Y, Du G, Chen N, Compos. Sci. Technol., 124, 36 (2016)
  18. Tarrio-Saavedra J, Lopez-Beceiro J, Naya S, Artiaga R, Polym. Degrad. Stabil., 93, 2133 (2008)
  19. Kim JA, Seong DG, Kang TJ, Youn JR, Carbon, 44, 1898 (2006)
  20. Vu CM, Bach QV, Vu HT, Nguyen DD, Kien BX, Chang SW, Macromol. Res., 28(1), 33 (2020)
  21. Ramezanzadeh B., Haeri Z., Ramezanzadeh M., Chem. Eng. J., 303, 511 (2016)
  22. Park YT, Qian YQ, Chan C, Suh T, Nejhad MG, Macosko CW, Stein A, Adv. Funct. Mater., 25(4), 575 (2015)
  23. Mahmood H, Vanzetti L, Bersani M, Pegoretti A, Compos. Pt. A-Appl. Sci. Manuf., 107, 112 (2018)
  24. Shen XJ, Pei XQ, Liu Y, Fu SY, Compos. Part B-Eng, 57, 120 (2014)
  25. Eksik O, Gao J, Shojaee SA, Thomas A, Chow P, Bartolucci SF, Lucca DA, Koratkar N, ACS Nano, 8, 5282 (2014)
  26. Madeshwaran SR, Jayaganthan R, Velmurugan R, Gupta NK, Manzhirov AV, J. Phys.: Conf. Series, 991, 012054 (2018)
  27. Sahu M, Narashimhan L, Prakash O, Raichur AM, ACS Appl. Mater. Interfaces, 9, 14347 (2017)
  28. Buchman A, Dodiuk-Kenig H, Dotan A, Tenne R, Kenig S, J. Adhes. Sci. Technol., 23(5), 753 (2009)
  29. Sidhu J, Lathkar G, Sharma S, Adv. Mater. Res., 875, 288 (2014)
  30. Zohar E, Baruch S, Shneider M, Dodiuk H, Kenig S, Tenne R, Wagner HD, J. Adhes. Sci. Technol., 25(13), 1603 (2011)
  31. Chen Z, Yan H, Guo L, Li L, Yang P, Liu B, Compos. Pt. A-Appl. Sci. Manuf., 121, 18 (2019)
  32. Kim SK, Wie JJ, Mahmood Q, Park HS, Nanoscale, 6, 7430 (2014)
  33. Haba D, Brunner AJ, Pinter G, Compos. Sci. Technol., 119, 55 (2015)
  34. Feng XM, Wang X, Cai W, Hong NN, Hu Y, Liew KM, J. Hazard. Mater., 320, 252 (2016)
  35. Chen B, Ni BJ, Liu WT, Ye QY, Liu SY, Zhang HX, Yoon KB, RSC Adv., 8, 20450 (2018)
  36. Zhang YY, Gu Y, Comput. Mater. Sci., 71, 197 (2013)
  37. Wang D, Song L, Zhou K, Yu X, Hu Y, Wang J, J. Mater. Chem. A, 3, 14307 (2015)
  38. Singh VK, Mishra H, Ali R, Umrao S, Srivastava R, Abraham S, Misra A, Singh VN, Mishra H, Tiwari RS, Srivastava A, ACS Appl. Nano Mater., 2, 566 (2018)
  39. Yan Y, Zhang C, Gu W, Ding C, Li X, Xian Y, J. Phys. Chem. C, 120, 12170 (2016)
  40. Lin L, Xu Y, Zhang S, Ross IM, Ong ACM, Allwood DA, ACS Nano, 7, 8214 (2013)
  41. Yi JJ, She XJ, Song YH, Mao M, Xia KX, Xu YG, Mo Z, Wu JJ, Xu H, Li HM, Chem. Eng. J., 335, 282 (2018)
  42. Han GQ, Liu YR, Hu WH, Dong B, Li X, Chai YM, Liu YQ, Liu CG, Mater. Chem. Phys., 167, 271 (2015)
  43. Luo SD, Dong SY, Lu C, Yu CF, Ou YW, Luo L, Sun JY, Sun JH, J. Colloid Interface Sci., 513, 389 (2018)
  44. Zohar E, Baruch S, Shneider M, Dodiuk H, Kenig S, Wagner HD, Zak A, Moshkovith A, Rapoport L, Tenne R, Sens. Transducers, 12, 53 (2011)
  45. Zisman WA, Ind. Eng. Chem., 55, 18 (1963)
  46. Van Oss CJ, Chaudhury MK, Good RJ, Chem. Rev., 88, 927 (1988)
  47. Owens DK, Wendt R, J. Appl. Polym. Sci., 13, 1741 (1969)
  48. Kang WS, Rhee KY, Park SJ, Compos. Part B-Eng, 114, 175 (2017)
  49. Neumann AW, Good RJ, Hope CJ, Sejpal M, J. Colloid Interface Sci., 49, 291 (1974)
  50. Riaz S, Park SJ, Materials, 12, 1354 (2019)
  51. Shimizu RN, Demarquette NR, J. Appl. Polym. Sci., 76(12), 1831 (2000)
  52. Ozcan C, Hasirci N, J. Appl. Polym. Sci., 108(1), 438 (2008)
  53. Gill C, Sidhu J, Int. J. Mater. Sci. Technol., 6, 21 (2016)
  54. Shaikh M, Pawar G, Sidhu J, Int. J. Sci. Res., 2, 462 (2013)
  55. Haba D, Brunner AJ, Barbezat M, Spetter D, Tremel W, Pinter G, Eur. Polym. J., 84, 125 (2016)
  56. Shneider M, Dodiuk H, Tenne R, Kenig S, Polym. Eng. Sci., 53(12), 2624 (2013)