화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.6, 635-638, December, 2020
오일 양이 최소화된 물/오일 에멀젼을 통한 구형 마이크로 크기 실리카 합성
Preparation of Spherical Silica by Water/oil Microemulsion with Minimal Oil Content
E-mail:
초록
W/O 에멀젼을 통해 구형의 실리카를 합성하는데 있어서 오일의 양을 최소화하는 연구를 수행하였다. 물유리 283 g에 오일로서 헥산을 최소한으로 20~60 mL 사용하여 구형의 실리카가 합성됨을 확인하였다. 실리카의 크기는 오일의 양에 의존하였으며, 오일의 양이 증가함에 따라서 실리카 입자의 크기가 증가하는 것을 확인하였다. 합성된 구형 실리카의 비표면적을 BET법을 통해 측정해본 결과 186~230 m2/g 값임을 확인하였다. XRF 분석으로부터 90% 이상이 SiO2임을 확인하였으며, 물유리 사용으로 인한 나트륨이 3.27~4.5 wt. %의 불순물로 함유되어 있었다. 본 연구에서 제조한 구형의 실리카는 Si의 전구체를 공업용 규산나트륨 용액을 사용함과 더불어 최소한의 헥산과 비이온계면활성제를 통하여 만들어졌기 때문에 대량 합성 및 상업화에 최적화되어 있는 조건이라고 판단된다.
We prepared spherical silica by minimizing the amount of oil through water/oil (W/O) emulsion. The spherical silica was successfully synthesized by using 20 to 60 mL of hexane as an oil for 283 g of water glass. The size of silica was dependent on the amount of oil where the size of silica particles increased as the amount of oil increased. The specific surface areas of samples measured using the BET method were 186 to 230 m2/g. X-ray fluorescence (XRF) analysis results showed that the SiO2 content was more than 90% while sodium was 3.27~4.5 wt. %. The spherical silica prepared in this study could be optimized for mass synthesis and commercialization because the industrial sodium silicate solution was used as a precursor of Si as well as the minimum amounts of hexane and nonionic surfactant were employed.
  1. Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, et al., ACS Nano, 6, 6829 (2012)
  2. Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH, Part. Fibre Toxicol., 7, 39 (2010)
  3. Rahman A, Seth D, Mukhopadhyaya SK, Brahmachary RL, Ulrichs C, Goswami A, Naturwissenschaften, 96, 31 (2009)
  4. Van Grieken R, Aguado J, Lopez-Muoz MJ, Marugan J, J. Photochem. Photobiol. A-Chem., 148, 315 (2002)
  5. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 43(1), 13 (2003)
  6. Han Y, Hwang G, Kim H, Haznedaroglu BZ, Lee B, Chem. Eng. J., 259, 653 (2015)
  7. Lu CY, Su FS, Hsu SC, Chen WF, Bai HL, Hwang JF, Lee HH, Fuel Process. Technol., 90(12), 1543 (2009)
  8. Jesionowski T, Powder Technol., 127(1), 56 (2002)
  9. Park JH, Oh C, Shin SI, Moon SK, Oh SG, J. Colloid Interface Sci., 266(1), 107 (2003)
  10. Esquena J, Tadros TF, Kostarelos K, Solans C, Langmuir, 13(24), 6400 (1997)
  11. Lee SG, Jang YS, Park SS, Kang BS, Moon BY, Park HC, Mater. Chem. Phys., 100(2-3), 503 (2006)
  12. Binks BP, Lumsdon SO, Langmuir, 16(6), 2539 (2000)
  13. Kang DG, Kim KD, Kim HT, J. Ind. Eng. Chem., 11, 500 (2000)
  14. Park JH, Chung SC, Oh C, Shin SI, Im SS, Oh SG, J. Ind. Eng. Chem., 13, 502 (2002)
  15. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
  16. Van Helden AK, Jansen JW, Vrij A, J. Colloid Interface Sci., 81, 354 (1981)
  17. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ, Angew. Chem.-Int. Edit., 50, 5947 (2011)
  18. Nakamura T, Mizutani M, Nozaki H, Suzuki N, Yano K, J. Phys. Chem. C, 111, 1093 (2007)
  19. Niu DC, Ma Z, Li YS, Shi JL, J. Am. Chem. Soc., 132(43), 15144 (2010)
  20. Suteewong T, Sai H, Cohen R, Wang ST, Bradbury M, Baird B, Gruner SM, Wiesner U, J. Am. Chem. Soc., 133(2), 172 (2011)
  21. Newalkar BL, Komarneni S, Chem. Mater., 13, 4573 (2001)
  22. Knoblich B, Gerber T, J. Non-Cryst. Solids, 296, 81 (2001)
  23. Kim JM, Stucky GD, Chem. Commun., 13, 1159 (2000)
  24. Midmore BR, J. Colloid Interface Sci., 213(2), 352 (1999)
  25. Park JH, Bae SY, Oh SG, Chem. Lett., 32(7), 598 (2003)
  26. Yun S, Luo H, Gao Y, RSC Adv., 4, 4535 (2014)
  27. Park SCKHC, J. Korean Oil Chemist. Soc., 23, 1 (2006)