화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.6, 835-840, November, 2020
리이소프렌-폴리스티렌 복합재료의 분자 동력학 연구: 공간 보완 거동
Molecular Dynamics Study of Polyisoprene-polystyrene Composites: Spatial Complementary Behaviour
E-mail:
Various additives have been applied to adjust the properties of rubber in the tire industry. As an important environmental waste, plastic is a potential additive to be added to rubber to blend aiming at forming abrasive and deformation resistance elastomers. However, the molecular details remain unclear, especially for their assembly structure. Using all-atom molecular dynamics simulations, we have studied the assembly structures and processes of polyisoprene and polystyrene complex, focusing on the spatial complementary behavior. The simulation results indicate that polyisoprene and polystyrene can form tight entangled structure. The polyisoprene can adjust their conformations to fill up the cavity generated from polystyrene self-aggregation. The formed cross-linked and spatial polystyrene complementary structures can improve the plasticity and abrasive resistance, which is superiority in tire design. Our results provide an important understanding of the rubber application and tire industry and give a possible idea to deal with abandoned plastics.
  1. Van Der Heijden H, Garn W, Eur. J. Oper. Res., 225, 420 (2013)
  2. Thiffault P, Bergeron J, Accid. Anal. Prev., 35, 381 (2003)
  3. Aarts L, Van Schagen I, Prev., 38, 215 (2006)
  4. Grogan R, Watson T, J. Forensic. Sci., 14, 165 (1974)
  5. Osanaiye GJ, Leonov AI, White JL, J. Non-Newton. Fluid Mech., 49, 87 (1993)
  6. Muratoglu OK, Argon AS, Cohen RE, Weinberg M, Polymer, 36(5), 921 (1995)
  7. Irez AB, Bayraktar E, Miskioglu I, Mechanics of Composite, Hybrid and Multifunctional Materials, Springer, Vol 5, p 67 (2019).
  8. Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D, J. Mater. Sci., 40(18), 5083 (2005)
  9. Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F, Mater. Des., 66, 142 (2015)
  10. He X, Shi X, Hoch M, Gogelein C, Polym. Compos., 39, 3212 (2018)
  11. Qu L, Yu G, Xie X, Wang L, Li J, Zhao Q, Polym. Compos., 34, 1575 (2013)
  12. Salaeh S, Nakason C, Polym. Compos., 33, 489 (2012)
  13. Bhattacharya M, Maiti M, Bhowmick AK, Polym. Eng. Sci., 49(1), 81 (2009)
  14. Karaagac B, Polym. Compos., 35, 245 (2014)
  15. Saha S, Bhowmick AK, Polymer, 103, 233 (2016)
  16. Jha A, Bhowmick A, Polym. Degrad. Stabil., 62, 575 (1998)
  17. Lin L, Liu S, Zhang Q, Li X, Ji M, Deng H, Fu Q, ACS Appl. Mater. Inter., 5, 5815 (2013)
  18. Sengers WGF, Sengupta P, Noordermeer JWM, Picken SJ, Gotsis AD, Polymer, 45(26), 8881 (2004)
  19. Mousa A, Ishiaku U, Ishak ZM, Polym. Test., 19, 193 (2000)
  20. Banerjee SS, Kumar KD, Bhowmick AK, Mater. Eng., 300, 283 (2015)
  21. Schuler LD, Daura X, Van Gunsteren WF, J. Comput. Chem., 22, 1205 (2001)
  22. Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE, J. Chem. Theory. Comput., 7, 4026 (2011)
  23. Hess B, Kutzner C, Van Der Spoel D, Lindahl E, J. Chem. Theory. Comput., 4, 435 (2008)
  24. Humphrey W, Dalke A, Schulten K, J. Mol. Graph. Model., 14, 33 (1996)
  25. Sharma P, Roy S, Karimi-Varzaneh HA, J. Phys. Chem. B, 120(7), 1367 (2016)
  26. Hudzinskyy D, Lyulin AV, Baljon ARC, Balabaev NK, Michels MAJ, Macromolecules, 44(7), 2299 (2011)