화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.90, 341-350, October, 2020
Impact of chain flexibility of copolymer gelators on performance of ion gel electrolytes for functional electrochemical devices
E-mail:
In this study, rationally designed random copolymers containing highly flexible, low glass transition temperature (Tg) segments are suggested as effective polymeric gelators for high-performance ion gel electrolytes. To this end, a series of poly(styrene-ran-butyl acrylate) copolymers (PS-r-PBAs) is prepared by a one-pot reversible additional-fragmentation chain transfer polymerization. Physically crosslinked ion gel electrolytes are produced by self-assembly when blended with ionic liquids of 1-butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([BMI][TFSI]). The properties of gels based on PSr-PBAs and PS-ran-poly(methyl methacrylate)s (PS-r-PMMAs) are compared at similar molecular conditions. As a result, the effectiveness of the high chain flexibility of butyl acrylate is shown by higher ionic conductivity. The gels with PS-r-PBAs are further optimized in terms of the molecular characteristics of copolymers (e.g., the content of Sty and total molecular weight) and gel composition. The versatility of PS-r-PBA-containing gels as practical electrolyte platforms is demonstrated by preparing all-in-one type electrochromic devices, for which electrochromic ion gels are prepared by incorporating chromophores into the gels. To extend the functionality of the electrochromic devices, dotshaped electrochromic gel arrays are fabricated for actively controllable smart windows that can reduce the window strike of birds.
  1. Song ES, Shin JB, Lee SH, Kim SK, J. Ind. Eng. Chem., 87, 173 (2020)
  2. Yu Z, Jiao S, Li S, Chen X, Song WL, Teng T, Tu J, Chen HS, Zhang G, Fang DN, Adv. Funct. Mater., 29, 180679 (2019)
  3. Miranda DF, Versek C, Tuominen MT, Russell TP, Watkins JJ, Macromolecules, 46(23), 9313 (2013)
  4. Zhang J, Jiang G, Cumberland T, Xu P, Wu Y, Delaat S, Yu A, Chen Z, InfoMat, 1, 234 (2019)
  5. Jacob MME, Hackett E, Giannelis EP, J. Mater. Chem., 13, 1 (2003)
  6. Zhang J, Sun B, Huang X, Chen S, Wang G, Sci. Rep., 4, 6007 (2015)
  7. Lee KH, Zhang S, Gu Y, Lodge TP, Frisbie CD, ACS Appl. Mater. Interfaces, 5, 9522 (2013)
  8. He M, Zhang K, Chen G, Tian J, Su B, ACS Appl. Mater. Interfaces, 9, 16466 (2017)
  9. Clement CE, Jiang D, Thio SK, Park SY, Materials, 10, 41 (2017)
  10. Ha M, Xia Y, Green AA, Zhang W, Renn MJ, Kim CH, Hersam MC, Frisbie CD, ACS Nano, 4, 4388 (2010)
  11. Hwang H, Park SY, Kim JK, Kim YM, Moon HC, ACS Appl. Mater. Interfaces, 11, 4399 (2019)
  12. Kim YM, Moon HC, Adv. Funct. Mater., 30, 190729 (2020)
  13. Kim YM, Seo DG, Oh H, Moon HC, J. Mater. Chem. C, 7, 161 (2019)
  14. Tang BX, White SP, Frisbie CD, Lodge TP, Macromolecules, 48(14), 4942 (2015)
  15. Hashimoto K, Hirasawa M, Kokubo H, Tamate R, Li X, Shibayama M, Watanabe M, Macromolecules, 52(21), 8430 (2019)
  16. Lodge TP, Ueki T, Accounts Chem. Res., 49, 2107 (2016)
  17. Choi I, Ahn H, Park MJ, Macromolecules, 44(18), 7327 (2011)
  18. Tamate R, Hashimoto K, Ueki T, Watanabe M, Phys. Chem. Chem. Phys., 20, 25123 (2018)
  19. Hwang HD, Lee JY, Park SY, Seo YS, Kim YM, Kim JK, Moon HC, J. Ind. Eng. Chem., 88, 233 (2020)
  20. Lee D, Jung Y, Ha M, Ahn H, Lee KH, Seo M, J. Mater. Chem. C, 7, 6950 (2019)
  21. Que M, Tong Y, Wei G, Yuan K, Wei J, Jiang Y, Zhu H, Chen Y, J. Mater. Chem. A, 4, 14132 (2016)
  22. Moon HC, Kim CH, Lodge TP, Frisbie CD, ACS Appl. Mater. Interfaces, 8, 6252 (2016)
  23. Seo DG, Kim YM, Ahn H, Moon HC, Nanoscale, 11, 16733 (2019)
  24. Mayo FR, Lewis FM, J. Am. Chem. Soc., 66, 1594 (1944)
  25. Fernandez-Garcia M, Fernandez-Sanz M, Madruga EL, Cuervo-Rodriguez R, Hernandez-Gordo V, Fernandez-Monreal MC, Polym. Chem., 38, 60 (2000)
  26. Lee YH, Yen WC, Su WF, Dai CA, Soft Matter, 7, 10429 (2011)
  27. Nieswandt K, Georgopanos P, Abetz C, Filiz V, Abetz V, Materials, 12, 3145 (2019)
  28. Seo DG, Moon HC, Adv. Funct. Mater., 28, 170694 (2018)
  29. In YR, Kim YR, Lee YJ, Choi WY, Kim SH, Lee SW, Moon HC, ACS Appl. Mater. Interfaces, 12, 30635 (2020)
  30. Watanabe Y, Nagashima T, Nakamura K, Kobayashi N, Sol. Energy Mater. Sol. Cells, 104, 140 (2012)
  31. Madasamy K, Velayutham D, Suryanarayanan V, Kathiresan M, Ho KC, J. Mater. Chem. C, 7, 4622 (2019)
  32. Pande GK, Kim N, Choi JH, Balamurugan G, Moon HC, Park JS, Sol. Energy Mater. Sol. Cells, 197, 25 (2019)
  33. Pande GK, Choi JH, Lee JE, Kim YE, Choi JH, Choi HW, Chae HG, Park JS, Chem. Eng. J., 393, 124690 (2020)
  34. Oh H, Lee JK, Kim YM, Yun TY, Jeong U, Moon HC, ACS Appl. Mater. Interfaces, 11, 45959 (2019)
  35. Kim JW, Myoung JM, Adv. Funct. Mater., 29, 180891 (2019)
  36. Loss SR, Lao S, Eckles JW, Anderson AW, Blair RB, Turner RJ, PLoS One, 14, E02241 (2019)
  37. Rebolo-Ifran N, di Virgilio A, Lambertucci SA, Sci. Rep., 9, 18148 (2019)
  38. Sheppard CD, Glob. Ecol. Conserv., 20, e00795 (2019)