Applied Chemistry for Engineering, Vol.31, No.5, 481-486, October, 2020
삼척항 표층퇴적물 내 유기물 및 중금속 분포 특성
Distribution Characteristics of Organic Matters and Heavy Metals in Surface Sediments of Samcheok Port
E-mail:
초록
삼척항 내 표층 퇴적물에 대한 지화학적 특성을 파악하기 위하여 입도, 유기물 및 중금속 분포 특성을 조사하였다. 삼척항 퇴적물은 sand, silt, clay가 혼재된 특성을 보였으며, 내항에는 세립질이 우세하였고, 외항에는 조립질이 우세한 것으로 나타났다. 표층 퇴적물의 유기물(COD, TOC, IL) 오염정도는 내항이 외항보다 더 심한 것으로 나타났으며, 총 질소 및 총인 농도도 내항이 더 높은 것으로 나타나고 있다. 또한 중금속 농도도 외항보다 내항에서 더 높았다(As제외). 내항 표층 퇴적물의 높은 유기물 농도 및 C/N비로 보아 육상 유래 유기물의 오염 기여가 큰 것으로 판단된다. 표층 퇴적물의 입도, 이화학적 성분, 중금속 간의 상관성 분석에서 silt-clay는 중금속과 높은 상관성을 보였고, 유기물 지표와 중금속간의 상관성도 대체적으로 높게 나타났다. 중금속 연속추출결과에 따르면 Ni, Zn, Cu, Pb, Cd 및 As는 이온교환, 탄산염, 산화물 형태를 합한 평균 존재비가 각각 14.8, 49.8, 39.1, 32.2, 51.8 및 26.6%이었다.
To evaluate geochemical characteristics of surface sediments in Samcheok Port, the distribution characteristics of particle sizes, organic matters and heavy metals were investigated. The sediments showed a mixed property of sand, silt, and clay, however fine-grains dominated at the inner port and coarse-grains dominated at the outer port. The organic (COD, TOC, and IL) contamination of the sediment at the inner port were higher than that of the outer port, and the concentrations of total nitrogen and total phosphorus at the inner port was higher than those of the outer port. Also, heavy metals contamination of surface sediments at the inner port was higher than those of the outer port (except for As). From the results of high organic matter concentrations and C/N ratio at the inner port, it is considered that the contamination of organic matters was mainly derived from the land. The correlation analysis among the particle size, chemical composition, and heavy metals resulted in high correlation between silt-clay and heavy metals, and between organic matters and heavy metals. The sequential extraction results of heavy metals showed the sum of exchangeable, carbonate, and oxide fractions of Ni, Zn, Cu, Pb, Cd, and As were 14.8, 49.8, 39.1, 32.2, 51.8 and 26.6%, respectively.
- Ministry of Land, Transport and Maritime Affairs, Guidance for Remediation.Restoration of Marine Contaminated Sediment (2010).
- Donghae Regional Maritime Affairs and Fisheries Office, http://donghae.mof.go.kr/index.do (2015).
- Lee DJ, Kim GY, Moon JH, Eom KH, J. Korean Soc. Mar. Environ. Energ., 14, 213 (2011)
- Gray JS, Wu RS, Or YY, Mar. Ecol. Prog. Ser., 238, 249 (2002)
- Song CW, Han HJ, Lee JU, J. Korean Soc. Miner. Energy Resour. Eng., 56, 10 (2019)
- Park GO, Jun SH, Korean J. Limnol., 41, 166 (2018)
- Parsons TR, Takahashi M, Hargrave B, Biological Oceanographic Processes, 3rd ed., Pergamon Press, Oxford, England (1984).
- Tessier A, Camphell PGC, Bisson M, Anal. Chem., 51, 844 (1979)
- National Institutes of Fisheries Science, 2001 Annual Report of East Sea Fisheries Research Institute, 104, Report No. GOVP12002-14476, National Institutes of Fisheries Science, Korea (2002).
- Muller PJ, Cosmochim Acta., 41, 765 (1977)
- Stein R, Accumulation of Organic Carbon in Marine Sediments, Results from the Deep sea Drilling Project/ocean Drilling Program (DSDP/ODP), Vol. 34, 217, Springer-Verlag, Berlin, Germany (1991).
- Sabbe K, Vyverman W, Belg. J. Bot., 124, 91 (1991)
- Enriquez S, Duarte SM, Sand-Jensen K, Oecologia, 94, 457 (1993)
- Shin WS, Aikawa Y, Nishimura O, Envion. Eng. Res., 17, 77 (2012)
- Martin J, Lusher A, Thompson RC, Morley A, Sci. Rep., 7, 10772 (2017)
- National Oceanic and Atmospheric Administration (NOAA), Sediment Quality Guidelines Developed for the National Status and Trends Program, http://ccma.nos.noaa.gov/publications/sqg.pdf (1999).
- Bacon J, Davidson CM, Analyst, 133, 25 (2008)
- Batjargal T, Otgonjargal E, Baek K, Yang JS, J. Hazard. Mater., 184(1-3), 872 (2010)
- Passos EA, Alves JC, Santos IS, Alves JPH, Garcia CAB, Costa ACS, Microchem. J., 96, 50 (2010)