Korean Chemical Engineering Research, Vol.58, No.4, 635-641, August, 2020
에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 상평형과 형성 거동
Phase Equilibria and Formation Behaviors of Methane Hydrate with Ethylene Glycol and Salts
E-mail:
초록
이 연구에서는 에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 상평형과 형성 거동을 측정하였다. 염의 종류로는 염화나트륨(NaCl), 브롬화나트륨(NaBr), 아이오딘화나트륨(NaI)을 이용하였으며, 272~283 K의 온도 범위와 3.5~11 MPa의 압력범위에서 상평형 조건을 확인하였다. 5 wt% NaCl + 10 wt% MEG, 5 wt% NaBr + 10 wt% MEG, 5 wt% NaI + 10 wt% MEG의 순서로 메탄 하이드레이트의 억제 효과가 나타났음을 확인하였다. 에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 형성 거동은 생성유도시간, 가스소모량과 성장 속도를 분석하여 확인하였다. 에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 생성유도시간은 실험 조건에서 큰 차이를 보이지 않았지만, 에틸렌글리콜과 염의 첨가는 가스소모량과 성장 속도에 영향을 주었음을 확인할 수 있었다.
In this study, phase equilibria and formation behaviors of methane hydrate containing mono-ethylene glycol (MEG) and salts (sodium chloride, NaCl; sodium bromide, NaBr; sodium iodide, NaI) are investigated. Equilibrium conditions of methane hydrate containing MEG and salts are measured in a temperature range 272~283 K and a pressure range 3.5~11 MPa. Hydrate inhibition performance in the presence of additives can be summarized as follows: methane hydrate containing (5 wt% NaCl + 10 wt% MEG) > (5 wt% NaBr + 10 wt% MEG) > (5 wt% NaI + 10 wt% MEG). Formation behaviors of methane hydrate with MEG and salts are investigated for analyzing the induction time, gas consumption amount and growth rate of methane hydrates. There are no significant changes in the induction time during methane hydrate formation, but the addition of MEG and salts solution during hydrate formation can affect the gas consumption amount and growth rate.
Keywords:Methane hydrate;thermodynamic inhibitor;ethylene glycol;salt;phase equilibria;formation behaviors
- US Energy Information Administration, Energy Perspectives: Fossil fuels dominate U.S. energy consumption(2012).
- US Energy Information Administration, International Energy Outlook (2017).
- Farmer P, Miller D, Pieprzak A, Rutledge J,, Woods R, “Exploring the subsalt, Oilfield Review,” 8(1), 50-64(1996).
- Markum R, Perdigao B, Cunningham R, Greenberg J, Schempf J, Wimmer C, Gamboa S, PennWell Custom Publishing(2012).
- Nicholas JW, Dieker LE, Sloan ED, Koh CA, J. Colloid Interface Sci., 331(2), 322 (2008)
- Sloan ED, Koh C, “Clathrate Hydrates of Natural Gases,” CRC press(2007).
- Sloan ED, Nature, 26(6964), 353 (2003)
- Sloan ED, Koh CA, Sum AK, “Natural Gas Hydrates in Flow Assurance,” Elsevier(2011).
- Mokhatab S, Wilkens RJ, Leontaritis KJ, Energy Sources, Part A, 29(1), 39 (2007)
- Baek S, Min J, Lee JW, RSC Advances, 5(72), 58813 (2015)
- Cha M, Baek S, Morris J, Lee JW, Chemistry An Asian J., 9(1), 261 (2014)
- Baek S, Min J, Ahn YH, Cha M, Lee JW, Energy Fuels, 33(1), 523 (2019)
- Min J, Kang DW, Ahn YH, Lee W, Cha M, Lee JW, Chem. Eng. J., 389(1), 124461 (2020)
- Choe J, “Offshore Drilling Engineering,” CIR publishing(2012).
- Park KH, Jeong D, Yoon JH, Cha M, Fluid Phase Equilib., 493, 43 (2019)
- Mohammadi AH, Afzal W, Richon D, J. Chem. Thermodyn., 40(12), 1693 (2008)
- Cha MJ, Hu Y, Sum AK, Fluid Phase Equilib., 413, 2 (2016)
- Hu Y, Lee BR, Sum AK, AIChE J., 63(11), 5111 (2017)
- Hu Y, Lee BR, Sum AK, AIChE J., 64(6), 2240 (2018)
- Hu Y, Sa JH, Lee BR, Sum AK, AIChE J., 64(11), 4097 (2018)
- Sabil KM, Witkamp GJ, Peters CJ, Fluid Phase Equilib., 290(1-2), 109 (2010)
- Sun SC, Zhao J, Yu DJ, Fluid Phase Equilib., 456, 92 (2018)
- Soave G, Chem. Eng. Sci., 27(6), 1197 (1972)
- Chaturvedi E, Patidar K, Srungavarapu M, Laik S, Mandal A, Adv. Powder Technol., 29(4), 1025 (2018)
- Adisasmito S, Frank RJIII, Sloan ED, J. Chem. Eng. Data, 36(1), 68 (1991)