화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.89, 212-221, September, 2020
Morphology details and size distribution characteristics of single-pot-synthesized silica nanoparticles
E-mail:,
A series of silica nanoparticles (SNP-1, SNP-2, SNP-3, SNP-4, SNP-5 and SNP-6) were synthesized in ethanol by the hydrolysis and polycondensation reaction of tetraethoxysilane with the aids of water initiator and ammonia catalyst and then investigated in a comprehensive manner in terms of morphological structure by using synchrotron transmission small-angle X-ray scattering and grazing incidence wide-angle X-ray scattering and combined together with dynamic light scattering, scanning electron microscopy, infrared spectroscopy and thermogravimetry. They were confirmed to be successfully synthesized as oblate amorphous ellipsoids (Re = 9.70~56.30 nm, equatorial radius; e = 0.78~0.80, ellipsoidicity) with sharp surfaces in single unimodal and narrow size distributions. The radial density profile details, including two-phases (i.e., less dense core and denser shell), were determined for the first time, in addition to a set of structural parameter details (radius of gyration, radius, core radius, shell thickness, and radius distribution). Larger particle was synthesized conveniently by higher loading of ammonia solution with respect to the silane monomer. The as-synthesized silica particles were found to undergo two-step mass loss behaviors in heat treatment up to 500 °C; the firststep loss took place below 120 °C due to removals of physically absorbed water molecules and possible solvent residues and the second-step loss above 180 °C occurred by removals of water and ethanol byproducts due to the post condensation reactions of hydroxy and ethoxy residues.
  1. Jutzi P, Schubert U, Silicon chemistry: from the atom to extended systems, Wiley-VCH, New York, 2003.
  2. Iler RK, The chemistry of silica: Solubility, polymerization, colloid and surface properties, and biochemistry, Wiley, New York, 1979.
  3. Giesche H, Medical applications of colloids, Springer, New York, pp.42 2008.
  4. Falcone JS(Ed.), Soluble silicates, ACS Symposium Series No. 194, ACS, Washington, D.C, 1982.
  5. Mann S, Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press, New York, 2001.
  6. Carcouet CCMC, van de Put MWP, Mezari B, Magusin PCMM, Laven J, et al., Nano Lett., 14, 1433 (2014)
  7. Lee BD, Park YH, Hwang YT, Oh W, Yoon J, Ree M, Nat. Mater., 4(2), 147 (2005)
  8. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK, Mater. Chem. Phys., 114(1), 328 (2009)
  9. Klabunde KJ, Nanoscale Materials in Chemistry, Wiley-Interscience, New York, 2001.
  10. Brinker CJ, Scherer GW, Sol-Gel Science, Elsevier, Amsterdam, 1990.
  11. Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G, Adv. Mater., 16(21), 1959 (2004)
  12. Grant SA, Weilbaecher C, Lichlyter D, Sens. Actuators B-Chem., 121, 482 (2007)
  13. Jalili MM, Moradian S, Dastmalchian H, Karbasi A, Prog. Org. Coat., 59, 81 (2007)
  14. Zarschler K, Rocks N, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA, Nanotechnol. Biology Medicine, 12, 1663 (2016)
  15. Vis B, Hewitt RE, Faria N, Bastos C, Chappell H, Pele L, Jugdaohsingh R, Kinrade SD, Powell JJ, ACS Nano, 12, 10843 (2018)
  16. Jaroenworaluck A, Sunsaneeyametha W, Kosachan N, Stevens R, Surf. Interface Anal., 38, 473 (2006)
  17. Vossen DLJ, Penninkhof JJ, van Blaaderen A, Langmuir, 24(11), 5967 (2008)
  18. Zou H, Wu SS, Shen J, Chem. Rev., 108(9), 3893 (2008)
  19. Fang Y, Phillips BM, Askar K, Choi B, Jiang P, Jiang B, J. Mater. Chem. C, 1, 6031 (2013)
  20. Lofgreen JE, Ozin GA, Chem. Soc. Rev., 43, 911 (2014)
  21. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
  22. Han YD, Lu ZY, Teng ZG, Liang JL, Guo ZL, Wang DY, Han MY, Yang WS, Langmuir, 33(23), 5879 (2017)
  23. Bogush GH, Zukoski CF, J. Colloid Interface Sci., 142, 19 (1991)
  24. Bogush GH, Tracy MA, Zukoski CF, J. Non-Cryst. Solids, 104, 95 (1988)
  25. De G, Karmakar B, Ganguli D, J. Mater. Chem., 10, 2289 (2000)
  26. Yokoi T, Wakabayashi J, Otsuka Y, Fan W, Iwama M, Watanabe R, Aramaki K, Shimojima A, Tatsumi T, Okubo T, Chem. Mater., 21, 3719 (2009)
  27. Wang J, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T, ACS Appl. Mater. Interf, 3, 1538 (2011)
  28. Hartlen KD, Athanasopoulos APT, Kitaev V, Langmuir, 24(5), 1714 (2008)
  29. Meier M, Ungerer J, Klinge M, Nirschl H, Colloids Surf. A: Physicochem. Eng. Asp., 538, 559 (2018)
  30. Han J, Yu TK, Im SH, J. Ind. Eng. Chem., 52, 376 (2017)
  31. van Blaaderen A, van Geest J, Vrij A, J. Colloid Interface Sci., 154, 481 (1992)
  32. Gonzalez-Alvarez RJ, Naranjo-Rodriguez I, Hernandez-Artiga MP, Palacios-Santander JM, Cubillana-Aguilera L, Bellido-Milla D, J. Sol-Gel Sci. Technol., 80, 378 (2016)
  33. Park SK, Kim KD, Kim HT, Colloids Surf. A: Physicochem. Eng. Asp., 197, 7 (2002)
  34. Fouilloux S, Daillant J, Thill A, Colloids Surf. A: Physicochem. Eng. Asp., 393, 122 (2012)
  35. Kovacvic I, Pivac B, Dubcek P, Radic N, Bernstorff S, Slaoui A, Thin Solid Films, 511-512, 463 (2006)
  36. Pontoni D, Narayanan T, Rennie AR, Langmuir, 18(1), 56 (2002)
  37. Jensen H, Pedersen JH, Jørgensen JH, Pedersen JS, Joensen D, Iversen SB, Søgaard EG, J. Exper. Nanosci, 1, 355 (2006)
  38. Riello P, Mattiazzi M, Pedersen JS, Benedetti A, Langmuir, 24(10), 5225 (2008)
  39. Goertz V, Gutsche A, Dingenouts N, Nirschl H, J. Phys. Chem. C, 116, 26938 (2012)
  40. Rieker T, Hanprasopwattana A, Datye A, Hubbard P, Langmuir, 15(2), 638 (1999)
  41. Green DL, Lin JS, Lam YF, Hu MZC, Schaefer DW, Harris MT, J. Colloid Interface Sci., 266(2), 346 (2003)
  42. Ruckdeschel P, Dulle M, Honold T, Forster S, Karg M, Retsch M, Nano Res, 9, 1366 (2016)
  43. Kim K, Kim J, Yun Y, Ahn H, Min B, Kim N, Rah S, Kim H, Lee C, Seo i, Lee W, Choi H, Jin K, Biodesign, 5, 24 (2017)
  44. Ree BJ, Lee J, Satoh Y, Kwon K, Isono T, Satoh T, Ree M, Polymers, 10, 1347 (2018)
  45. Ree BJ, Satoh Y, Jin KS, Isono T, Kim WJ, Kakuchi T, Satoh T, Ree M, NPG Asia Materials, 9, e453 (2017)
  46. Shin SR, Jin KS, Lee CK, Kim SI, Spinks GM, So I, Jeon JH, Kang TM, Mun JY, Han SS, Ree M, Kim SJ, Adv. Mater., 21(19), 1907 (2009)
  47. Ree M, Macromol. Rapid Commun., 35(10), 930 (2014)
  48. Kim YY, Ree BJ, Kido M, Ko YG, Ishige R, Hirai T, Wi D, Kim J, Kim WJ, Takahara A, Ree M, Adv. Electronic Mater, 1, 150197 (2015)
  49. Ree BJ, Aoki D, Kim J, Satoh T, Takata T, Ree M, Macromolecules, 52(14), 5325 (2019)
  50. Glatter OJ, J. Appl. Crystallogr., 10, 415 (1977)
  51. Takeshita H, Poovarodom M, Kiya T, Arai F, Takenaka K, Miya M, Shiomi T, Polymer, 53(23), 5375 (2012)
  52. Stetefeld J, McKenna SA, Patel TR, Biophys Rev, 8, 409 (2016)
  53. Lee J, Xiang L, Byambabaatar S, Kim H, Jin KS, Ree M, Internatl. J. Biolog. Macromol, 127, 286 (2019)
  54. Siegert AJF, Radiation Laboratory Report No. 465, MIT, Cambridge, MA, USA, 1949.
  55. Simons J, Int. J. Quantum Chem, 20, 779 (1981)