Korean Journal of Chemical Engineering, Vol.37, No.10, 1743-1750, October, 2020
Efficient conversion of glucosamine to ethyl levulinate catalyzed by methanesulfonic acid
E-mail:
This study is focused on the possibility of using crustacean waste shells for sustainable biofuels and chemical production. We investigated the synthesis of ethyl levulinate (EL) from glucosamine by the methanesulfonic acidcatalyzed hydrothermal reaction using Box-Behnken design. In the ethyl levulinate synthesis, higher water content highly inhibited the formation of EL. Among the reaction factors, reaction temperature, catalyst concentration, and reaction time positively affected the outcome more than substrate concentration. The optimized reaction conditions were 200 °C reaction temperature, 60 g/L substrate concentration, 0.75M catalyst concentration, and 44.9min. Under these conditions, a 22.76mol% EL yield was achieved. These results suggest that crustacean waste shells can be used for renewable feedstocks to produce valuable chemicals and biofuels.
Keywords:Glucosamine;Ethyl Levulinate;Platform Chemical;Methanesulfonic Acid;Acid-catalyzed Hydrothermal Process
- Hoekman SK, Renew. Energy, 34(1), 14 (2009)
- Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH, Biorefineries-industrial processes and products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 139 (2006).
- Werpy T, Petersen G, Top value added chemicals from biomass, volume I - Results of screening for potential candidates from sugars and synthesis gas, National Renewable Energy Lab., Golden, CO (2004).
- Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342 (2007)
- Ra CH, Sirisuk P, Jung JH, Jeong GT, Kim SK, Bioprocess. Biosyst. Eng., 41, 457 (2018)
- Park MR, Kim SK, Jeong GT, Biotechnol. Bioprocess Eng., 23, 302 (2018)
- Meinita MDN, Marhaeni B, Jeong GT, Hong YK, J. Appl. Phycol., 31(4), 2507 (2019)
- Inokuma K, Takano M, Hoshino K, Biochem. Eng. J., 72, 24 (2013)
- Rinaudo M, Prog. Polym. Sci., 31, 603 (2006)
- Wang YX, Pedersen CM, Deng TS, Qiao Y, Hou XL, Bioresour. Technol., 143, 384 (2013)
- Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290 (2018)
- Kim HS, Kim SK, Jeong GT, RSC Adv., 8, 3198 (2018)
- Coh BY, Lee JW, Kim ES, Park YS, J. Chitin Chitosan, 8(3), 127 (2003)
- Hulsey MJ, Green Energy Environ., 3, 318 (2018)
- Tiong YW, Yap CL, Gan S, Yap WSP, Ind. Crop. Prod., 128, 221 (2019)
- Quereshi S, Ahmad E, Pant KK, Dutta S, Catal. Today, 291, 187 (2017)
- Chang C, Xu GZ, Jiang XX, Bioresour. Technol., 121, 93 (2012)
- Peng LC, Lin L, Zhang JH, Shi JB, Liu SJ, Appl. Catal. A: Gen., 397(1-2), 259 (2011)
- Ahmad E, Alama MI, Pant KK, Haider MA, Green Chem., 18, 4804 (2016)
- Guan Q, Lei T, Wang Z, Xu H, Lin L, Chen G, Li X, Li Z, Ind. Crop. Prod., 113, 150 (2018)
- Bozell JJ, Petersen GR, Green Chem., 12(4), 539 (2010)
- Popova M, Shestakova P, Lazarova H, Dimitrov M, Kovacheva D, Szegedi A, Mali G, Dasireddy V, Likozar B, Wilde N, Glaser R, Appl. Catal. A: Gen., 560, 119 (2018)
- Pasquale G, Vazquez P, Romanelli G, Baronetti G, Catal. Commun., 18, 115 (2012)
- Zhang Z, Dong K, Zhao ZK, ChemSusChem, 4, 112 (2011)
- Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115 (2018)
- Miller GL, Anal. Chem., 31, 426 (1959)
- Xu G, Chang C, Fang S, Ma X, Renew. Energy, 78, 583 (2015)
- Rataboul F, Essayem N, Ind. Eng. Chem. Res., 50(2), 799 (2011)
- Mascal M, Nikitin EB, ChemSusChem, 3, 1349 (2010)
- De S, Dutta S, Saha B, Green Chem., 13, 2859 (2011)
- Zhao G, Liu M, Xia X, Li L, Xu B, Molecules, 24, 1881 (2019)
- Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480 (2012)