화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.10, 1669-1679, October, 2020
Electrooxidation of single-carbon molecules by nanostructured Pd-decorated spongy ceria
E-mail:,
Solution combustion synthesis is proposed to fabricate spongy ceria by using two different fuels for combustion: glycine and urea. As-prepared samples are labeled as SCOGl and SCOUr. The acid-base properties of the cavities and surfaces of specimens are determined by measuring the pH of zero charges. Both SCOGl and SCOUr powders are decorated by the nanostructured Pd (NSPd) by the wetness incorporation. The NSPd-SCOGl and NSPd-SCOUr represent the high mass current density than NSPd as non-supported palladium for the electrooxidation of single-carbon molecules: methanol, formaldehyde and formic acid. The results show that the NSPd-SCOGl and NSPd-SCOUr are exceptional heterogeneous catalysts. The SCO as the support with porous structural network has been affected considerably on the electrochemical surface area, dispersion, and durability of NSPd. On the other hand, it can be effective for removing the poisoning species of the electrooxidation of single-carbon molecules on NSPd through the lattice oxygen, and the activation of an oxidation-reduction cycle between the high and low chemical valences of cerium, leading to improve the electrocatalytic efficiency of NSPd. Finally, it is confirmed the conversion of methanol to formaldehyde, and then to formic acid during electrooxidation by using cyclic voltammetry studies.
  1. Raoof JB, Ojani R, Hosseini SR, Microchim. Acta, 180, 879 (2013)
  2. Abrishamkar M, Barootkoob M, Int. J. Hydrog. Energy, 42(37), 23821 (2017)
  3. Feng L, Chang J, Jiang K, Xue H, Liu C, Cai WB, Xing W, Zhang J, Nano Energy, 30, 355 (2016)
  4. Raoof JB, Omrani A, Ojani R, Monfared F, J. Electroanal. Chem., 633(1), 153 (2009)
  5. Prasanna D, Selvaraj V, Korean J. Chem. Eng., 33(4), 1489 (2016)
  6. Sheng GQ, Chen JH, Ye HQ, Hu ZX, Fu XZ, Sun R, Huang WX, Wong CP, J. Colloid Interface Sci., 522, 264 (2018)
  7. Hepel M, Kumarihamy I, Zhong CJ, Electrochem. Commun., 8, 1439 (2006)
  8. Zhang YM, Liu Y, Liu WH, Li XY, Mao LQ, Appl. Surf. Sci., 407, 64 (2017)
  9. Sebastian D, Nieto-Monge MJ, Perez-Rodriguez S, Pastor E, Lazaro MJ, Energies, 11, 831 (2018)
  10. Wang G, Ye K, Shao JQ, Zhang YY, Zhu K, Cheng K, Yan J, Wang GL, Cao DX, Int. J. Hydrog. Energy, 43(19), 9316 (2018)
  11. Kuppan B, Selvam P, Pro. Nat. Sci. Mater., 22, 616 (2012)
  12. Zhang FB, Jiang JX, Ni Y, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 190, 90 (2014)
  13. Zhao S, Yin H, Du L, Yin G, Tang Z, Liu S, J. Mater. Chem. A, 2, 3719 (2014)
  14. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT, Appl. Catal. B: Environ., 56(1-2), 9 (2005)
  15. Zahed M, Afarani MS, Mohebbi-Kalhori D, Appl. Phys. A-Mater. Sci. Process., 120, 215 (2015)
  16. Kulesza PJ, Grzybowska B, Malik MA, Chojak M, Miecznikowski K, J. Electroanal. Chem., 512(1-2), 110 (2001)
  17. Macak JM, Barczuk PJ, Tsuchiya H, Nowakowska MZ, Ghicov A, Chojak M, Bauer S, Virtanen S, Kulesza PJ, Schmuki P, Electrochem. Commun., 7, 1417 (2005)
  18. Saha MS, Li R, Sun X, Electrochem. Commun., 9, 2229 (2007)
  19. Hogue MA, Higgins DC, Hassan FM, Choi JY, Pritzker MD, Chen ZW, Electrochim. Acta, 121, 421 (2014)
  20. Chai GS, Shin IS, Yu JS, Adv. Mater., 16(22), 2057 (2004)
  21. Cui Z, Yang M, Di-Salvo FJ, ACS Nano, 8, 6106 (2014)
  22. Zhan J, Cai M, Zhang CF, Wang C, Electrochim. Acta, 154, 70 (2015)
  23. Bai BY, Li JH, Hao JM, Appl. Catal. B: Environ., 164, 241 (2015)
  24. Xie X, Li Y, Liu ZQ, Haruta M, Shen W, Nature, 458, 746 (2009)
  25. Hu LH, Peng Q, Li YD, J. Am. Chem. Soc., 130(48), 16136 (2008)
  26. Wu JB, Li ZG, Huang XH, Lin Y, J. Power Sources, 224, 1 (2013)
  27. Delimaris D, Ioannides T, Appl. Catal. B: Environ., 84(1-2), 303 (2008)
  28. Abad A, Concepcion P, Corma A, Garcia H, Angew. Chem.-Int. Edit., 44, 4066 (2005)
  29. Ma HY, Zeng L, Tian H, Li D, Wang X, Li XY, Gong JL, Appl. Catal. B: Environ., 181, 321 (2016)
  30. Hassanzadeh-Tabrizi SA, Mazaheri M, Aminzare M, Sadrnezhaad SK, J. Alloy. Compd., 491, 499 (2010)
  31. Mokkelbost T, Kaus I, Grande T, Einarsrud MA, Chem. Mater., 16, 5489 (2004)
  32. Yu T, Joo J, Park YI, Hyeon T, Angew. Chem.-Int. Edit., 117, 7577 (2005)
  33. Yan L, Yu R, Chen J, Xing X, Cryst. Growth Des., 8, 1474 (2008)
  34. Liu J, Zhang D, Pu X, Liu J, Zhang R, Mater. Lett., 117, 158 (2014)
  35. Yavari Z, Noroozifar M, Khorasani-Motlagh M, J. Appl. Electrochem., 45(5), 439 (2015)
  36. Proniewicz LM, Paluszkiewicz C, Weselucha-Birczynska A, Majcherczyk H, Baranski A, Konieczna A, J. Mol. Struct., 596, 163 (2001)
  37. Manivannan M, Int. J. Eng. Sci. Technol., 3, 8048 (2011)
  38. Singh RN, Sharma T, Singh A, Anindita, Mishra D, Tiwari SK, Electrochim. Acta, 53(5), 2322 (2008)
  39. Li L, Xing Y, Energies, 2, 789 (2009)
  40. Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, et al., Nat. Chem., 2, 826 (2010)
  41. Zhao Y, Fan LZ, Ren JL, Hong B, Int. J. Hydrog. Energy, 39(9), 4544 (2014)
  42. Fu Z, Li WS, Zhang WG, Sun FQ, Zhou ZH, Xiang XD, Int. J. Hydrog. Energy, 35(15), 8101 (2010)
  43. Noroozifar M, Yavari Z, Khorasani-Motlagh M, Ghasemi T, Rohani-Yazdi SH, Mohammadi M, RSC Adv., 6, 563 (2016)
  44. Wang Z, Zhu ZZ, Shi J, Li HL, Appl. Surf. Sci., 253(22), 8811 (2007)
  45. Douk AS, Saravani H, Noroozifar M, J. Alloy. Compd., 739, 882 (2018)
  46. Yang S, Yang J, Chung Y, Kwon Y, Int. J. Hydrog. Energy, 42(27), 17211 (2017)
  47. Sequeira CAC, Santos DMF, Brito PSD, Appl. Surf. Sci., 252(17), 6093 (2006)