Polymer(Korea), Vol.44, No.5, 709-714, September, 2020
초저압용 나노중공사 복합막의 제조
Preparation of Nanofiltration Hollow Fiber Composite Membranes for Ultra-low Pressure Application
E-mail:
초록
폴리설폰 한외여과 중공사막 표면에 염석법을 이용하여 폴리비닐아민(poly(vinyl amine), PVAm)을 코팅시간, 이온세기, 건조온도, 가교농도 등을 변경하여 나노여과 중공사 복합막(NF hollow fiber composite membranes)을 제조하였으며 이를 염화나트륨(NaCl) 100 ppm과 황산칼슘(CaSO4) 100 ppm 용액에 대하여 투과도와 배제율을 측정였다. 모든 조건에서 염화나트륨보다 황산칼슘의 배제율이 더 컸는데 이는 크기 및 도난 배제효과에 기인한 것으로 생각된다. 반면에, 투과도에서는 오히려 황산칼슘의 경우가 염화나트륨의 경우보다 높았는데 이는 아미노기(-NH2)로 인한 막의 팽윤으로 인하여 분자크기가 큰 2가 이온이 자유로이 투과할 수 있는 통로를 제공하는 것으로 사료된다. 대표적으로 이온세기 0.2, 가교제농도 0.7%, 코팅시간 30초, 건조온도 및 시간 80 °C, 20분 조건에서 염화나트륨에 대하여 투과도 22 LMH(L/m2/hr)와 배제율 74% 그리고 황산칼슘에 대하여 투과도 29 LMH와 배제율 92%를 각각 나타내었다.
Nanofiltration hollow fiber composite membranes were prepared through the salting-out method by coating poly(vinyl amine) (PVAm) onto polysulfone hollow fiber membrane surface while varying the conditions of coating time, ionic strength, drying temperature, and crosslinking concentration. The resulting membranes were measured in terms of flux and rejection for NaCl 100 ppm and CaSO4 100 ppm aqueous solutions. The rejection of CaSO4 for all prepared membranes was higher than that of NaCl due to the size and donnan exclusion effects. On the other hand, the flux for CaSO4 was higher than for NaCl since it is considered the swelling by -NH2 in PVAm provides free passage of divalent ions, CaSO4. Typically, 22 LMH flux and 74% rejection for NaCl and the 29 LMH flux and 92% rejection, respectively, were obtained for the NF membrane prepared at the conditions of ionic strength at 0.2, crosslinking concentration of 0.7%, coating time of 30 s, drying temperature at 80 °C and drying time of 20 min.
- Xia LL, Ren J, McCutcheon JR, J. Membr. Sci., 585, 109 (2019)
- Baker RW, Membrane Technology and Applications, McGrawHill, Menlo Park, California, USA, p 203 (2012).
- Li H, Shi W, Zhang H, Zhou R, Qin X, Prog. Org., 139, 105456 (2020)
- Lau WJ, Ismail AF, Misdan N, Kassim MA, Desalination, 287, 190 (2012)
- Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW, Abu Arabi M, Desalination, 170(3), 281 (2004)
- Lau WJ, Ismail AF, Desalination, 245(1-3), 321 (2009)
- Li D, Wang H, J. Mater. Chem., 20, 4551 (2010)
- Schafer AI, Fane AG, Waite TD, Nanofiltration: Principles and Applications, Elsevier, Britain, 2003.
- Li YX, Cao Y, Wang M, Xu ZL, Zhang HZ, Liu XW, Li Z, J. Membr. Sci., 565, 322 (2018)
- Li XP, Zhao CW, Yang M, Yang B, Hou DY, Wang T, Appl. Surf. Sci., 419, 418 (2017)
- Wei XZ, Kong X, Sun CT, Chen JY, Chem. Eng. J., 223, 172 (2013)
- Park CO, Rhim JW, Membrane J., 28, 361 (2018)
- Cho EH, Rhim JW, Macromol. Res., 23(2), 183 (2015)
- Dalwani M, Bargeman G, Hosseiny SS, Boerrigter M, Wessling M, Benes NE, J. Membr. Sci., 381(1-2), 81 (2011)
- Ilyasa S, Englisha R, Aimar P, Lahitte J, de Vosa WM, Colloids Surf. A: Physicochem. Eng. Asp., 533, 286 (2017)
- Hannah R, Alders AM, Tobias L, Stephan E, Mueller SI, Tepper M, Wessling M, J. Membr. Sci., 58, 115 (2019)
- Li XP, Zhao CW, Yang M, Yang B, Hou DY, Wang T, Appl. Surf. Sci., 419, 418 (2017)
- Cheong S, Kim B, Lee H, Rhim JW, Macromol. Res., 21(6), 629 (2013)
- Rhim JW, Lee B, Park HH, Seo CH, Macromol. Res., 22(4), 361 (2014)
- Kim KY, Rhim JW, Membr. Water Treat., 7, 101 (2016)
- Yu M, Ph.D. Thesis, University of Aachen (2011).
- Semenova SI, Ohya H, Soontarapa K, Desalination, 110, 251 (1991)
- Kwak SY, Kim SH, Kim SS, Environ. Sci. Technol. Lett., 35, 2388 (2001)
- Li XP, Chen YB, Hu XY, Zhang YF, Hu LJ, J. Membr. Sci., 471, 118 (2014)
- Cho M, M.A.Sc. Thesis, KAIST, p 45 (2012).