화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.5, 618-624, September, 2020
축전식 탈염공정에서 탄소전극에 코팅된 이온교환 고분자의 두께와 탈착전위가 탈착 성능에 미치는 영향
Effects of the Thickness of Ion Exchange Polymers Coated onto the Carbon Electrodes and Desorption Potentials on the Desorption Performance in Capacitive Deionization Process
E-mail:
초록
탄소전극 위에 코팅된 이온교환막 층의 두께와 인가되는 역전위에 의해 막 결합형 축전식 탈염공정에서 탈착공정에 어떠한 영향을 끼치는지 조사하였다. 이온교환막은 양이온교환 고분자로서 폴리(이서 이서 케톤)(poly(ether ether ketone), PEEK)을, 음이온교환 고분자로서 폴리설폰(polysulfone, PSf)을 사용하였다. 이온교환막의 코팅은 1회 및 2회를 실시하였으며 역전위는 -0.3, -0.5, -1.0 V가 사용되었다. 코팅되지 않은 전극에서 역전위가 클수록 배출수 농도가 0이 되는 시간이 길었는데 이는 전극의 기공 내에서 탈착하지 못하고 흡착되어 있던 염분자들이 높은 전위에서 탈착되는 것에 기인한다고 사료된다. 코팅의 두께가 클수록 탈착 시 배출수 농도가 높아 2회 코팅 시 약 420 mg/L의 농도값을 보여주었다. 탈착전위가 클수록 배출수 농도가 0으로 떨어지는 시간이 짧아지므로 탈착공정에서의 탈착전위는 큰 것이 유리함을 알 수 있었다.
The effects of the thickness of the ion exchange polymers onto the carbon electrodes and the reverse potential applied on the desorption process in the membrane capacitive deionization process were investigated. Poly(ether ether ketone) (PEEK) was used as the cation exchange polymer while polysulfone (PSf) was used as the anion exchange polymer. The single and double coatings of the ion exchange polymers were carried out and the reverse potentials of -0.3, -0.5, -1.0 V were used. As the reverse potential was larger for the pristine carbon electrode, it took for a longer time to reach the 0 of the effluent concentration. The high effluent concentration of ca. 420 mg/L for the double coated electrode was shown. In the desorption process, the larger reverse potential was favorable since the time to the 0 effluent concentration took shorter as the reverse potential increased.
  1. Caudle DD, et al., Electrochemical demineralization of water with carbon electrodes, Research Report, Oklahoma University Research Institute, 1966.
  2. Li HB, Zou L, Desalination, 275(1-3), 62 (2011)
  3. Lee JY, Seo SJ, Yun SH, Moon SH, Water Res., 45, 5375 (2011)
  4. AlMarzooqi FA, Al Ghaferi AA, Saadat I, Hilal N, Desalination, 342, 3 (2014)
  5. Kim YJ, Choi JH, Sep. Purif. Technol., 71(1), 70 (2010)
  6. Lee JB, Park KK, Eum HM, Lee CW, Desalination, 196(1-3), 125 (2006)
  7. Biesheuvel PM, van der Wal A, J. Membr. Sci., 346(2), 256 (2010)
  8. Zhao R, Satpradit O, Rijnaarts HHM, Biesheuvel PM, van der Wal A, Water Res., 47, 1941 (2013)
  9. Kim JS, Choi JH, J. Membr. Sci., 355(1-2), 85 (2010)
  10. Kim JS, Kim CS, Shin HS, Rhim JW, Macromol. Res., 23(4), 360 (2015)
  11. Kim JS, Jeon YS, Rhim JW, Sep. Purif. Technol., 157, 45 (2016)
  12. Jeon YS, Cheong SI, Rhim JW, Macromol. Res., 25(7), 712 (2017)
  13. Yun WS, Lim SB, Rhim JW, Polym. Korea, 42(6), 1014 (2018)
  14. Moon GY, Rhim JW, Macromol. Res., 15(4), 379 (2007)
  15. Komkova EN, Stamatialis DF, Strathmann H, Wessling M, J. Membr. Sci., 244(1-2), 25 (2004)
  16. Moghbeli MR, Khajeh A, Alikhani M, Chem. Eng. J., 309, 552 (2017)
  17. Gao X, Omosebi A, Landon J, Liu K, J. Electrochem. Soc., 161, 159 (2014)
  18. Porada S, Borchardt L, Oschatz M, Bryjak M, Atchison JS, Keesman KJ, Kaskel S, Biesheuvel PM, Presser V, Energy Environ. Sci., 6, 3700 (2013)
  19. Bayram E, Ayranci E, Electrochim. Acta, 56(5), 2184 (2011)
  20. Cohen I, Avraham E, Bouhadana Y, Soffer A, Aurbach D, Electrochim. Acta, 153, 106 (2015)
  21. Kim MH, Roh KC, Polym. Sci. Technol., 28, 3 (2017)
  22. Semenova SI, Ohya H, Soontarapa K, Desalination, 110(3), 251 (1997)