화학공학소재연구정보센터
Journal of Materials Science, Vol.55, No.21, 8793-8801, 2020
Crystallization behavior of amorphous BaTiO3 thin films
The crystallization behavior of amorphous barium titanate (BaTiO3) thin films was studied as a function of annealing temperature from 500 to 1000 degrees C. Quantitative phase analysis by grazing incidence X-ray diffractometry revealed that the metastable hexagonal phase preferentially nucleates at lower temperatures with a transition to stable cubic nuclei at higher temperatures. The predominance of the metastable hexagonal-phase nucleation at lower temperatures suggests that it has the lowest nucleation barrier, in accordance with the Ostwald's step rule. To help induce the nucleation of the cubic phase at lower temperatures, we explored the effects of electric fields on the crystallization behavior and found that direct-current fields moderately enhanced the cubic phase fraction in the 500-700 degrees C temperature range. Although the nucleation barrier of the cubic phase in the presence of an electric should be lowered more significantly with respect to that of the hexagonal phase because of the former's higher relative permittivity, the effect arising from the change in volume free energy should only become significant at electric field strengths in the range of MV cm(-1), an order of magnitude higher than the experimentally accessible fields in the present study. This suggests alternative, perhaps interface-mediated, mechanisms by which the electric field modifies the nucleation behavior of BaTiO3.