Journal of Colloid and Interface Science, Vol.576, 195-202, 2020
In situ investigation of particle clustering dynamics in colloidal assemblies using fluorescence microscopy
Colloidal self-assembly is a process in which dispersed matter spontaneously form higher-order structures without external intervention. During self-assembly, packed particles are subject to solvent-evaporation induced dynamic structuring phases, which leads to microscale defects called the grain boundaries. While it is imperative to precisely control detailed grain boundaries to fabricate well-defined self-assembled crystals, the understanding of the colloidal physics that govern grain boundaries remains a challenge due to limited resolutions of current visualization approaches. In this work, we experimentally report in situ particle clustering dynamics during evaporative colloidal assembly by studying a novel microscale laser induced fluorescence technique. The fluorescence microscopy measures the saturation levels with high fidelity to identify distinct colloidal structuring regimes during self-assembly as well as cracking mechanics. The techniques discussed in this work not only enables unprecedented levels of colloidal self-assembly analysis but also have potential to be used for various sensing applications with microscopic resolutions. (C) 2020 Elsevier Inc. All rights reserved.
Keywords:Self-assembly;Saturation level;In situ measurements;Grain boundary;Laser induced fluorescence