화학공학소재연구정보센터
Journal of Applied Electrochemistry, Vol.50, No.6, 699-712, 2020
Effect of water on the electrodeposition of copper from a deep eutectic solvent
This study has examined the effect of water on the electrodeposition of copper from a deep eutectic solvent (DES). Initial physiochemical measurements showed that the viscosity and resistivity of the DES decreased with added water in the range 1-15 wt%. This reduction in viscosity resulted in an increase in the mass transfer limiting current, without narrowing the electrochemical window or altering the speciation of the copper chloro-complexes. This shows that metal deposition rates can be increased by water additions. The effect of water on the electrochemical kinetics of the Cu(I) and Cu(II) chloro-complexes was also studied. It was found that the kinetics of the Cu(I)/Cu(0) reaction is largely irreversible, while the Cu(II)/Cu(I) couple was quasi-reversible. The rate constants for Cu(II)/Cu(I) and Cu(I)/Cu(0) reactions were accelerated by water additions, although the transfer coefficients remained unchanged. The effect of increased deposition rates, electrolyte conductivity and reaction kinetics on deposit uniformity was estimated and subsequently verified by experiments. It was found that, although higher deposition rates could be achieved, the thickness of the deposit was non-uniform since the Wagner numbers remained relatively low. Graphic abstract