화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.9, 1541-1551, September, 2020
Production of a magnetic biosorbent for removing pharmaceutical impurities
E-mail:
A magnetic biosorbent was synthesized from rice straw (a biological waste) and magnetic particles of Fe3O4. The produced biosorbent, which was characterized by XRD, FE SEM, FTIR, and TGA experiments, was used for adsorption of two drug chemical components of Penicillin G and Amlodipine Besylate from aqueous solutions. Effects of various operating parameters such as adsorption temperature (10 to 70 °C), the dose of adsorbent (1 to 5 g/ L), contact time (30 to 360min), and pH of system (pH=4 to 11) on the adsorption efficiency were studied. The produced adsorbent can remove impurities with maximum adsorption efficiency of about 95% for Pen-G and 65% for AMB; therefore, it is a good adsorbent for removing pharmaceutical impurities from wastewater. Moreover, the produced biosorbent can easily separate from the solution by using an external magnetic field. Five isotherm models--linear adsorption model, Langmuir, Freundlich, Sips, and Toth--were used for describing the results; and based on Langmuir isotherm, the maximum adsorption capacity of the produced biosorbent is 164.7mg/g for Pen-G and 229mg/g for AMB. The adsorption kinetics was well fitted with the pseudo-first-order kinetic model, and it is shown that the adsorption is extremely in physical mode.
  1. Bautista ME, Perez L, Garcia MT, Cuadros S, Marsal A, Chem. Eng. J., 262, 399 (2015)
  2. dos Reis GS, Wilhelm M, Silva TCA, Rezwan K, Sampaio CH, Lima EC, Souza SMAGU, Appl. Therm. Eng., 93, 590 (2016)
  3. Cusido JA, Cremades LV, Soriano C, Devant M, Appl. Clay Sci., 108, 191 (2015)
  4. Li H, Sun Z, Zhang L, Tian Y, Cui G, Yan S, Colloids Surf. A: Physicochem. Eng. Asp., 489, 191 (2016)
  5. Morali U, Sensoz S, Fuel, 150, 672 (2015)
  6. Vamvuka D, Sfakiotakis S, Saxioni S, Fuel, 147, 170 (2015)
  7. Kandanlou R, Bin Ahmad M, Shameli K, Kalantari K, Bio Resource, 9, 642 (2013)
  8. Kumar P, Kumar S, Joshi L, Socioeconomic and environmental implications of agricultural residue burning, Springer Briefs in Environmental Science, Germany, 144 (2015).
  9. Minu K, Jiby KK, Kishore VVN, Biomass Bioenerg., 39, 210 (2012)
  10. Jani SM, Rushdan I, J. Trop. Agric. and Fd. Sc., 44, 103 (2016).
  11. Kim I, Lee B, Park JY, Choi SA, Han JI, Carbohydr. Polym., 99, 563 (2014)
  12. e Silva CFL, Schirmer MA, Maeda RN, Barcelos CA, Pereira N, Electron. J. Biotechnol., 18, 10 (2015)
  13. Suhas, Carrott PJM, Carrott MMLR, Bioresour. Technol., 98(12), 2301 (2007)
  14. Ghaffar SH, Fan M, Int. J. Adhes., 48, 92 (2014)
  15. Abraham A, Mathew AK, Sindhu R, Pandey A, Binod P, Bioresour. Technol., 215, 29 (2016)
  16. Baseri H, Tizro S, Process Saf. Environ. Protect., 109, 465 (2017)
  17. Guan W, Gao X, Ji G, Xing Y, Du C, Liu Z, J. Solid State Chem., 255, 150 (2017)
  18. Ghorbani F, Kamari S, Environ. Technol. Innovation, 14, 100333 (2019)
  19. Kamgar A, Hassanajili S, Karimipourfard G, J. Environ. Chem. Eng., 6, 3034 (2018)
  20. Yuan Q, Chi NY, Geng W, Yan W, Zhao Y, Li X, Dong B, J. Hazard. Mater., 255, 157 (2013)
  21. Jonoush ZA, Farzadkia M, Shahamat YD, dizaji AE, J. Mazandaran Univ. Med. Sci., 25(122), 158 (2015).
  22. Ding H, Zhao Y, Duan Q, Wang J, Zhang K, Ding G, Xie X, Ding C, J. Rare Earths, 35(10), 984 (2017)
  23. MirzaHedayata B, Noorisepehr M, Dehghanifard E, Esrafili A, Norozi R, J. Mol. Liq., 264(15), 571 (2018)
  24. Pouretedal HR, Sadegh N, J. Water Process Eng., 1, 64 (2014)
  25. Samarghandi MR, Al-Musawi TJ, Mohseni-Bandpi A, Zarrabi M, J. Mol. Liq., 211, 431 (2015)
  26. Wang L, Shen C, Cao Y, J. Phys. Chem. Solids, 116, 72 (2018)
  27. Caia W, Guo M, Weng X, Zhang W, Chen Z, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 98, 65 (2019)
  28. Fahimirad B, Rajabi M, Elhampour A, Anal. Chim. Acta, 275, 1047 (2019)
  29. Alizadeh E, Baseri H, Solid State Sci., 78, 86 (2018)
  30. Li QY, Ma KR, Ma ZJ, Wei Q, Liu JG, Cui SP, Nie ZR, Microporous Mesoporous Mater., 265, 18 (2018)
  31. Cullity BD, Stock SR. Elements of X-ray diffraction, 3rd Ed. Prentice Hall, New York (2001).
  32. Wang R, Wang X, Xi X, Hu R, Jiang G, Adv. Mater. Sci. Eng., 2012, 1 (2012)
  33. Babu CM, Palanisamy B, Sundaravel B, Palanichamy M, Murugesan V, J. Nanosci. Nanotechnol., 13(4), 2517 (2013)
  34. Hu MQ, Yan XL, Hu XY, Zhang JJ, Feng R, Zhou M, J. Colloid Interface Sci., 510, 111 (2018)
  35. Ahmaruzzaman M, Gayatri SL, Chem. Eng. Data J., 55, 4614 (2010)
  36. Ofomaja AE, Ho YS, Dyes Pigment., 74, 60 (2007)
  37. Nourmoradi H, Daneshfar A, Mazloomi S, Bagheri J, Barati S, Methods X, 6, 1967 (2019)
  38. Ghamkhari A, Mohamadi L, Kazemzadeh S, Zafar MN, Rahdar A, Khaksefidi R, Composites Part B, 182, 5 (2020)
  39. Ahmaruzzaman M, Gupta VK, Ind. Eng. Chem. Res., 50(24), 13589 (2011)
  40. Zhao Z, Nie T, Zhou W, Environ. Pollut., 254, 113015 (2019)
  41. Brito SMD, Andrade HMC, Soares LF, de Azevedo RP, J. Hazard. Mater., 174(1-3), 84 (2010)
  42. Ayawei N, Ebelegi AN, Wankasi D, J. Chem., 2017, 11 (2017)
  43. Aksu Z, Tunc O, Process Biochem., 40(2), 831 (2005)
  44. Srenscek-Nazzal J, Narkiewicz U, Morawski AW, Wrobel RJ, Michalkiewicz B, J. Chem. Eng. Data, 60(11), 3148 (2015)
  45. Srenscek-Nazzal J, Narkiewicz U, Morawski AW, Wrobel RJ, Michalkiewicz B, J. Chem. Eng. Data, 60(11), 3148 (2015)
  46. Jung KW, Lee SY, Lee YJ, Bioresour. Technol., 261, 1 (2018)
  47. Zaidi NAHM, Lim LBL, Usman A, Environ. Technol. Innovation, 13, 211 (2019)
  48. Nejadshafiee V, RezaIslami M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 101, 42 (2019)
  49. Qin L, Feng L, Li C, Fan Z, Zhang G, Shen C, Meng Q, J. Clean Prod., 228, 112 (2019)
  50. Mohammadi AS, Sardar M, J. Health Environ., 5(4), 497 (2013)