International Journal of Energy Research, Vol.44, No.11, 9166-9176, 2020
High-performance textile electrode enhanced by surface modifications of fiberglass cloth with polypyrrole tentacles for flexible supercapacitors
Textile-based flexible supercapacitors have various desirable advantages in practical applications due to their excellent flexibility, ease of large-scale production, and low cost. In this study, a flexible supercapacitor was designed and fabricated using a two-step polymerization method based on fiberglass cloth and unique morphology of polypyrrole (PPy). In this extraordinary nanostructure, not only do PPy tentacles provide high-speed channels for the transfer of electron and ion, but they also create a larger specific surface area, thus enhancing the energy storage. The fabricated PPy/CFC supercapacitor possesses an excellent area-specific capacitance of 549.6 mF cm(-2)and a remarkable energy density of 48.85 mu Wh cm(-2). Besides, it achieves the high capacitance retention of 92.4% after 10 000 charge and discharge cycles and 96.08% after 1000 bending cycles. Furthermore, it is demonstrated that the PPy/CFC supercapacitor is capable of ensuring a stable power supply for practical applications by driving an LCD electronic watch. The fiberglass cloth-based supercapacitors with PPy tentacles provide a new approach to the practical applications of wearable power supplies.