화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.28, No.5, 1203-1213, 2020
Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber
This study numerically investigates the impact of porous materials, nano-particle types, and their concentrations on transient natural convection heat transfer of nano-fluid inside a porous chamber with a triangular section. The governing equations of the two-phase mixture model are separated on the computational domain and solved using the Finite Volume Method, taking into account the Darcy-Brinkman model for porous medium. It was observed that convection heat transfer inside the triangular chamber consists of three stages named initial, transient, and semi-steady. The features of each step are provided in detail. The results suggested that the use of a hybrid nano-fluid (water/aluminum oxide-cooper) inside a porous glass material and an increase in volume fraction of nano-particles have adverse effects on heat transfer rate. In contrast, as the nano-particle volume fraction of the single nano-fluid (water/aluminum oxide) inside the chamber increased, convection heat transfer rate improved. At the same time, it was observed that the use of both nano-fluids (single and hybrid) in the porous environment of the aluminum foam could improve convection. (C) 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.