Biochemical and Biophysical Research Communications, Vol.527, No.2, 466-473, 2020
ApoL1 induces kidney inflammation through RIG-I/NF-kappa B activation
The genetic variations of the apolipoprotein L1 (APOL1) gene are associated with non-diabetic kidney diseases. However, very little is known about the role of ApoL1 in glomerular damage. Here, we aimed to identify the function and mechanism of ApoL1 in glomerular damage. The mice were randomly divided into two groups: one group was intraperitoneally injected with phosphate buffer saline (PBS), while the other group was intraperitoneally injected with recombinant ApoL1 every other day for 3 months. Hematoxylin and eosin (HE) and periodic acid Schiff (PAS) staining were used to demonstrate the effects of ApoL1 on kidney inflammation and injury. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) analyses revealed that ApoL1-treated mice exhibited enhanced expression of various inflammation markers in the kidney and serum compared to the PBS-treated mice. Immunofluorescence staining revealed that ApoL1 accumulated in kidney podocytes. Treatment with ApoL1 dose-dependently increased the expression of inflammation markers and apoptotic markers. The abnormal gene expression associated with ApoL1-mediated podocyte inflammation was evaluated using microarray analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the upregulated genes were enriched in the inflammation-related processes, such as the RIG-I/NF-kappa B signaling pathway. Consistently, the knockdown of RIG-I significantly mitigated the ApoL1-induced upregulation of inflammatory and apoptotic markers in the human podocytes. Additionally, the ApoL1-induced glomerular damage was attenuated in AAV-shRIG-I mice. Therefore, the effects of ApoL1 on glomerular damage may be, at least partially, through inducing abnormal expression of inflammatory molecules, which may have important implications for treatment of kidney diseases. (C) 2020 Elsevier Inc. All rights reserved.