화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.528, No.4, 706-712, 2020
A novel long noncoding RNA, ENSGALG00000021686, regulates the intracellular transport of fatty acids by targeting the FABP3 gene in chicken
Fatty acids (FAs) are essential for the vital movement of humans and animals. Their metabolism is, in part, regulated by FABP3. In our previous study, a novel lncRNA (ENSGALG00000021686, L21686) was identified, and FABP3 was predicted as its target gene. Here, using chicken myocytes, lymphocytes, and different tissues, L21686 target on the FABP3 gene, FABP3 mRNA expression, and their effect on FA metabolism are explored. The results show that the highest expression of L21686 is in muscle tissue, a significant energy-consuming tissue. L21686 expression is consistent with FABP3 mRNA expression. We also show that under the different treatments, the levels of FABP3 mRNA and protein in myocytes and lymphocytes change in tandem with L21686 expression. Moreover, the dual-luciferase reporter assay provided direct evidence that L21686 targets the FABP3 gene. Finally, it was found that the content of free FAs increases along with the up-regulation of L21686 and the FABP3 gene. Malonyl CoA content does not change under the different treatments, suggesting that L21686 regulates the intake of extracellular FAs in chicken. Further, the changes in lipoprotein lipase (LPL), sterol-regulatory element binding protein 1 (SREBP-1), fatty acid synthase (FASN), and acetyl-CoA carboxylase (ACC) mRNA levels support this view. In summary, our data show that the new lncRNA (L21686) regulates the intake of extracellular FAs in chicken cells in vitro by targeting the expression of the FABP3 gene. Our findings will help to establish the groundwork and provide a new clue for deciphering the regulation of FAs metabolism in chicken. (C) 2020 Elsevier Inc. All rights reserved.