화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.4, 443-451, August, 2020
축분 고형연료의 열분해 동역학 연구
Kinetic Analysis for the Pyrolysis of Solid Refues Fuel Using Livestock Manure
E-mail:
초록
본 연구에서는, 축분 고형연료의 연료적 가치를 판단하기 위해 물리화학적 특성과 열분해 동역학 분석을 수행하였다. 원소분석과 공업분석결과는 축분 고형연료는 휘발성 물질(64.94%), 탄소(44.35%) 및 수소(5.54%)의 함량이 높았다. 축분 고형연료의 저위발열량(3,880 kcal/kg) 또한 가축분뇨 고형 연료 기준(3,000 kcal/kg)보다 높았다. 열중량분석결과 축분연료는 3개의 분해온도구간을 가졌다. 첫 번째 온도구간(130~330 ℃)은 추출물의 기화, 헤미셀룰로우스 및 셀룰로우스의 분해로 구성되었다. 두 번째(330~480 ℃)와 세 번째(550~800 ℃) 온도 구간들은 리그닌의 분해와 carbonaceous materials 분해에 의한 것이었다. Friedman, FWO, KAS 같은 model free 분석방법에 의해 구해진 축분 고형연료의 열분해에 대한 활성화 에너지 값은 전환율 0.1에서 0.9 범위에서 173.98에서 525.79 kJ/mol로 나타났다. 특히, 전환율이 0.6보다 높은 구간에서 활성화에너지가 크게 증가하였다. Curve fitting 방법을 사용한 동역한 분석은 축분 고형연료가 5단계의 분해 단계로 구분될 수 있는 다단계 반응에 의해 분해됨을 제안하였다.
In this study, the physico-chemical properties and pyrolysis kinetics of livestock mature solid fuel were investigated to know its feasibility as a fuel. Ultimate and proximate analysis results showed that livestock mature solid fuel has high contents of volatile matter (64.94%), carbon (44.35%), and hydrogen (5.54%). The low heating value of livestock mature solid fuel (3880 kcal/kg) was also higher than the standard requirement of solid fuel (3000 kcal/kg). Thermogravimetic analysis results indicated that livestock mature solid fuel has three decomposition temperature regions. The first temperature zone (130~330 ℃) was consisted with the vaporization of extracts and the decomposition of hemicellulose and cellulose. The second (330~480 ℃) and third (550~800 ℃) temperature regions were derived from the decomposition of lignin and additional decomposition of carbonaceous materials, respectively. The activation energy derived from model free kinetic analysis results including Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods for the pyrolysis of livestock mature solid fuel was in the range of 173.98 to 525.79 kJ/mol with a conversion rate of 0.1 to 0.9. In particular, the activation energy increased largely at the higher conversion than 0.6. The kinetic analysis using a curve-fitting method suggested that livestock mature solid fuel was decomposed via a multi-step reaction which can be divided into five decomposition steps.
  1. Mao G, Huang N, Chen L, Wang H, Sci. Total Environ., 635, 1081 (2018)
  2. BP, BP Statistical Review of World Energy 2019, 68th edition (2019).
  3. Korea Energy Economics Institute, Yearbook of Energy Statistics (2019).
  4. Korea Energy Agency, 2019 KEA Energy Handbook (2019).
  5. Phae C, Biomass & Biogas Technology A-JIN, Seoul, Korea (2008).
  6. Korea Forest Service, Statistical Yearbook of Forestry (2019).
  7. Ministry of Environment, Waste Generation and Treatment (2019).
  8. Ministry of Agriculture Food and Rural Affairs, Agriculture Food and Rural Affairs Statistics Yearbook (2019).
  9. Yoon YM, World Agric., 162, 73 (2014)
  10. Ro KS, Cantrell K, Elliott D, Hunt PG, Ind. Eng. Chem. Res., 46(26), 8839 (2007)
  11. Lee JH, Yoon YM, Korean J. Environ. Biol., 37(4), 554 (2019)
  12. Cao HL, Xin Y, Wang DL, Yuan QX, Bioresour. Technol., 172, 219 (2014)
  13. Mezzullo WG, McManus MC, Hammond GP, Appl. Energy, 102, 657 (2013)
  14. Thanapal SS, Annamalai K, Sweeten JM, Gordillo G, Appl. Energy, 97, 525 (2012)
  15. Jang ES, Kim S, Shin DH, Lee KH, Korean Chem. Eng. Res., 42(3), 280 (2004)
  16. Yang J, Miranda R, Roy C, Polym. Degrad. Stabil., 73, 455 (2001)
  17. Friedman HL, J. Polym. Sci. C, 6, 183 (1964)
  18. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
  19. Flynn JH, Wall LA, J. Res. Nat. Bur. Stand. A: Phys. Chem., 70A, 487 (1966)
  20. Doyle CD, J. Appl. Polym. Sci., 6, 639 (1962)
  21. Kissinger HE, Anal. Chem., 29, 1702 (1957)
  22. Akahira T, Sunose T, Res. Report Chiba Inst. Technol., 16, 22 (1971)
  23. Song EH, Kim DG, Jeong CJ, Kim DY, Energies, 12, 836 (2019)
  24. Zhou S, Han L, Huang G, Yang Z, Peng J, J. Anal. Appl. Pyrolysis, 134, 343 (2018)
  25. Zhou Y, Chen Z, Gong H, Wang X, Yu H, Waste Manage., 107, 74 (2020)
  26. Yıldız Z, Kaya N, Topcu Y, Uzun H, Process Saf. Environ., 130, 297 (2019)
  27. Chong CT, Mong GR, Ng JH, Chong WF, Ani fN, Lame SS, Ong HC, Convers. Manag., 180, 1260 (2019)
  28. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel, 82(15-17), 1949 (2003)
  29. Hu M, Chen Z, Wang S, Guo D, Ma C, Zhou Y, Chen J, Laghari M, Fazal S, Xiao B, Zhang B, Ma S, Convers. Manag., 118, 1 (2016)
  30. Yuan XS, He T, Cao HL, Yuan QX, Renew. Energy, 107, 489 (2017)
  31. Yang HP, Yan R, Chin T, Liang DT, Chen HP, Zheng CG, Energy Fuels, 18(6), 1814 (2004)
  32. Xu YL, Chen BL, Bioresour. Technol., 146, 485 (2013)
  33. Di Blasi C, Prog. Energy Combust. Sci., 34(1), 47 (2008)
  34. Chen ZH, Hu M, Zhu XL, Guo DB, Liu SM, Hu ZQ, Xiao B, Wang JB, Laghari M, Bioresour. Technol., 192, 441 (2015)
  35. Cao HL, Xin Y, Wang DL, Yuan QX, Bioresour. Technol., 172, 219 (2014)
  36. Wang LJ, Shahbazi A, Hanna MA, Biomass Bioenerg., 35(1), 171 (2011)
  37. Wu H, Hanna MA, Jones DD, Waste Manag. Res., 30(10), 1066 (2012)
  38. Xin Y, Cao h, Yuan Q, Wang D, Liu Y, Environ. Prog. Sustain. Energy, 37(5), 1618 (2018)
  39. Hu M, Chen ZH, Guo DB, Liu CX, Xiao B, Hu ZQ, Liu SM, Bioresour. Technol., 177, 41 (2015)
  40. Chen ZH, Zhu QJ, Wang X, Xiao B, Liu SM, Energy Conv. Manag., 105, 251 (2015)
  41. Fernandez-Lopez M, Pedrosa-Castro GJ, Valverde JL, Sanchez-Silva L, Waste Manage., 25, 230 (2016)
  42. Sharara M, Sadaka S, J. Sustain. Bioenergy Syst., 4(1), 75 (2014)
  43. Simon P, J. Therm. Anal. Calorim., 76, 123 (2004)
  44. Islam MA, Asif M, Hameed BH, Bioresour. Technol., 179, 227 (2015)