화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.4, 352-359, August, 2020
효소 모사 활성 무기 나노입자의 진단 및 치료 응용연구 동향
Recent Progress in Inorganic Nanoparticles with Enzyme-Mimetic Activities and Their Applications to Diagnosis and Therapy
E-mail:
초록
무기 나노입자는 나노미터 크기에서 유래된 광학 및 자성 성질과 같은 물리적 특성을 활용하여 생명-의학 분야에 적극적으로 응용되어왔다. 최근에는 물리적 성질 이외에 무기 나노입자가 갖는 화학적 성질, 특히 효소와 유사한 촉매활성을 이용한 새로운 진단법들이 개발되고 있다. 효소 모사 활성의 검증에 집중하던 초기연구에서, 현재는 활성 메커니즘의 이해를 통한 적극적 활성 제어 및 치료 특성의 직접적 응용으로 연구 범위가 확장되고 있다. 본 총설에서는 효소 모사 활성을 갖는 무기 나노입자, 소위 “나노자임”의 촉매 활성 제어와 치료 및 진단 분야에서의 연구성과들에 대한 최근 동향을 정리하였다. 무기 나노입자의 효소 모사 활성은 입자의 고유한 물리적 성질과 결합되어 새로운 진단 및 치료법의 개발로 이어질 것으로 기대한다.
Inorganic nanoparticles have been actively applied to the bio-medical field by utilizing their physical properties derived from the nanometer size regime, such as optical and magnetic properties. In recent years, diagnostic detection methods have been developed by employing chemical activity, particularly enzyme-mimetic activities, as well as physical properties of inorganic nanoparticles. After the initial study of verifying the enzyme-mimetic activities, the scope of research has been expanded to the direct use of therapeutic effects with active control of activity through understanding of the catalytic mechanism. This review summarizes recent research works on the active control of the enzyme-mimetic activities and newly demonstrated applications on the diagnosis and treatment of diseases, focusing on inorganic nanoparticles, so-called “nanozyme”. It is expected that the enzyme-mimetic activity of inorganic nanoparticles will be combined with their inherent physical properties, leading to the development of new diagnostic and therapeutic methods.
  1. Murray CB, Kagan CR, Bawendi MG, Annu. Rev. Mater. Sci., 30, 545 (2000)
  2. Kim D, Kim J, Park YI, Lee N, Hyeon T, ACS Cent. Sci., 4, 324 (2018)
  3. Wegner KD, Hildebrandt N, Chem. Soc. Rev., 44, 4792 (2015)
  4. Kim DS, Choi BG, Appl. Chem. Eng., 29(1), 97 (2018)
  5. Fatima H, Kim KS, Korean J. Chem. Eng., 34(3), 589 (2017)
  6. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J, Chem. Rev., 115(19), 10637 (2015)
  7. Wei H, Wang E, Chem. Soc. Rev., 42, 6060 (2013)
  8. Shin HY, Park TJ, Kim MI, J. Nanomater., 2015, 756278 (2015)
  9. Sumner JB, J. Biol. Chem., 69, 435 (1926)
  10. Balasubramanian A, Ponnuraj K, J. Mol. Biol., 400, 274 (2010)
  11. Dieguez M, Backvall JE, Pamies O, Artificial Metalloenzymes and Metallodnazymes in Catalysis, Wiley-VCH Verlag GmbH & Co., Weinheim, Germany (2018).
  12. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X, Nat. Nanotechnol., 2(9), 577 (2007)
  13. Tarnuzzer RW, Colon J, Patil S, Seal S, Nano Lett., 5, 2573 (2005)
  14. Gao L, Fan K, Yan X, Theranostics, 7, 3207 (2017)
  15. Shin HY, Kim B, Cho S, Lee J, Na HB, Kim MI, Microchim. Acta., 184, 2115 (2017)
  16. Lu W, Zhang J, Li N, You Z, Feng Z, Natarajan V, Chen J, Zhan J, Sens. Actuators B-Chem., 303, 127106 (2020)
  17. Fan C, Liu J, Zhao H, Li L, Liu M, Gao JJ, Ma L, RSC Adv., 9, 33678 (2019)
  18. Cao W, Lin J, Muhammad F, Wang Q, Wang X, Lou Z, Wei H, J. Anal. Test., 3, 253 (2019)
  19. Song C, Ding W, Zhao W, Liu H, Wang J, Yao Y, Yao C, Biosens. Bioelectron., 151, 111983 (2020)
  20. Hu L, Liao H, Feng L, Wang M, Fu W, Anal. Chem., 90, 6247 (2018)
  21. Li W, Wang J, Zhu J, Zheng Y, J. Mater. Chem. B, 6, 6858 (2018)
  22. Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, et al., Angew. Chem.-Int. Edit., 51, 11039 (2012)
  23. Singh R, Singh S, Colloids Surf. B: Biointerfaces, 175, 625 (2019)
  24. Kim MY, Kim J, ACS Biomater. Sci. Eng., 3, 572 (2017)
  25. Kim S, Kim M, Jung S, Kwon K, Park J, Kim S, Kwon I, Tae G, J. Control. Release, 309, 181 (2019)
  26. Sun D, Pang X, Cheng Y, Ming J, Xiang S, Zhang C, Lv P, Chu C, Chen X, Liu G, ACS Nano, 14, 2063 (2020)
  27. Chen M, Wang ZH, Shu JX, Jiang XH, Wang W, Shi ZH, Lin YW, Inorg. Chem., 56(16), 9400 (2017)
  28. He S, Yang L, Lin X, Chen L, Peng H, Deng H, Xia X, Chen W, Talanta, 211, 120707 (2020)
  29. Xu X, Wang L, Zou X, Wu S, Pan J, Li X, Niu X, Sens. Actuators B-Chem., 298, 126876 (2019)
  30. Cheng H, Lin S, Muhammad F, Lin Y, Wei H, ACS Sens., 1, 1336 (2016)
  31. Yang H, Wu X, Su L, Ma Y, Graham NJ, Yu W, Water Res., 171, 115491 (2020)
  32. Bhagat S, Vallabani NVS, Shutthanandan V, Bowden M, Karakoti AS, Singh S, J. Colloid Interface Sci., 513, 831 (2018)
  33. Gharib M, Kornowski A, Noei H, Parak WJ, Chakraborty I, ACS Mater. Lett., 1, 310 (2019)
  34. Zhang X, Han G, Zhang R, Huang Z, Shen H, Su P, Song J, Yang Y, ACS Appl. Bio Mater., 3, 1469 (2020)
  35. Hu X, Li F, Xia F, Guo X, Wang N, Liang L, Yang B, Fan K, Yan X, Ling D, J. Am. Chem. Soc., 142, 1636 (2019)
  36. Kang S, Gil Y, Min D, Jang H, ACS Nano, 14, 4383 (2020)
  37. Im SJ, Lee SY, Park YI, Appl. Chem. Eng., 29(2), 138 (2018)