Macromolecular Research, Vol.28, No.8, 739-750, July, 2020
Performance Enhancement of PVDF/LiCIO4 Based Nanocomposite Solid Polymer Electrolytes via Incorporation of Li0.5La0.5TiO3 Nano Filler for All-Solid-State Batteries
E-mail:
Experimental and computational techniques have been applied to investigate the influence of Li0.5La0.5TiO3 nanoparticles on the ionic conductivity of the poly(vinylidene fluoride) (PVDF)/LiClO4 nanocomposite solid polymer electrolyte. The theoretical evidence facilitated to suggest a plausible mechanism for Li-ion conduction across the PVDF/LiClO4/Li0.5La0.5TiO3 based solid polymer electrolytes. The solid composite polymer electrolyte with 30wt% of Li0.5La0.5TiO3 (LLTO) nanofiller exhibited an unprecedented ionic conductivity of 2.3687 × 10-3 S cm-1 at room temperature. The addition of LLTO nanoparticles to the polymer matrix enhanced its ionic conductivity by two orders of magnitude. The activation energy (Ea) and total transference number (t) were estimated to be 0.29 eV and 0.853, respectively. The interaction between the filler and polymer matrix has been inferred by the density functional theory (DFT)-IR analysis. The DFT calculations have been performed on the above system using the basis set of B3LYP-LANL2DZ. The calculated IR spectra were compared with the experimental FTIR data, which allowed us to propose accurate vibrational assignments and to clarify the complex IR vibration of the samples. All-solid-state Li2FeSiO4/CPVDF/LiClO4/LLTO graphite lithium cell has been fabricated using the highest Li-ion conducting PVDF/LiClO4/LLTO composite polymer electrolyte. The all-solid-state cell exhibits an excellent initial specific capacity of 87.13 and 73.24 mAh g-1 after 30 cycles, demonstrating higher capacity retention. The findings provide an avenue for exploring the simple all-solid-state lithium batteries, which are potential candidates for next-generation energy storage technology.
Keywords:solid polymer electrolyte;nanocomposite;DFT calculations;ionic conductivity;all-solid-state battery
- Min HS, Ko JM, Kim DW, J. Power Sources, 119, 469 (2003)
- Scrosati B, Croce F, Persi L, J. Electrochem. Soc., 147(5), 1718 (2000)
- Kim HS, Shin JH, Moon SI, Kim SP, Electrochim. Acta, 48(11), 1573 (2003)
- Lu H, Du J, Yu C, Wang X, Gao Y, Xu W, Liu A, Lu X, Chen Y, Macromol. Res., DOI: 10.1007/s13233-020-8073-5 (2020).
- Ryu SC, Kim JY, Cho CL, Kim WN, Macromol. Res., 28(2), 118 (2020)
- Appetecchi GB, Scaccia S, Passerini S, J. Electrochem. Soc., 147(12), 4448 (2000)
- Bronstein LM, Karlinsey RL, Ritter K, Joo CG, Stein B, Zanziger JW, J. Mater. Chem., 14, 1812 (2004)
- Kim JW, Ji KS, Lee JP, Park JW, J. Power Sources, 119, 415 (2003)
- Stephan AM, Nahm KS, Polymer, 47(16), 5952 (2006)
- Qian XM, Gu NY, Cheng ZL, Yang XR, Wang EK, Dong SJ, Electrochim. Acta, 46(12), 1829 (2001)
- Wang YJ, Pan Y, Kim D, J. Power Sources, 159(1), 690 (2006)
- Balazs AC, Emrick T, Russell TP, Science, 314, 1107 (2006)
- Malekshahinezhad K, khaneghah AA, Behniafar H, Macromol. Res., DOI: 10.1007/s13233-020-8067-3 (2019).
- Inugama, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Waki har M, Solid State Commun., 86, 689 (1993)
- Abhilash KP, Selvin PC, Nalini B, Somasundaram K, Sivaraj P, Bose AC, J. Phys. Chem. Solids, 91, 114 (2016)
- Abhilash KP, Sivaraj P, Selvin PC, Nalini B, Somasundaram K, Ceram. Int., 41, 13823 (2015)
- Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y, Nano Lett., 15, 2740 (2015)
- Wang C, Zhang XW, Appleby AJ, J. Electrochem. Soc., 152, 205 (2005)
- Sivaraj P, Nalini B, Abhilash KP, Lakshmi D, Selvin PC, Balraju P, J. Alloy. Compd., 740, 1116 (2018)
- Kohn W, Sham L, J. Phys. Rev., 140, 1133 (1965)
- Parr RG, Yang W, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, Clarendon, 1989.
- Becke AD, J. Chem. Phys., 98, 5648 (1993)
- Miehlich B, Savin A, Stoll H, Preuss H, Chem. Phys. Lett., 157, 200 (1989)
- Hay PJ, Wadt WR, J. Chem. Phys., 82, 299 (1985)
- Lee C, Yang W, Parr RG, Phys. Rev B, 37, 785 (1988)
- Choi SS, Lee YS, Joo CW, Lee SG, Park JK, Han KS, Electrochim. Acta, 50(2-3), 339 (2004)
- Swamy DT, Babu KE, Veeraiah V, Bull. Mater. Sci., 36, 1115 (2013)
- Yang CL, Li ZH, Li WJ, Liu HY, Xiao QZ, Lei GT, Ding YH, J. Membr. Sci., 495, 341 (2015)
- Faria LO, Moreira RL, J. Polym. Sci. B: Polym. Phys., 38(1), 34 (2000)
- Zhen X, Zhang L, Shi M, Li L, Cheng L, Jiao Z, Yang W, Ding Y, Macromol. Res., 28(3), 266 (2020)
- Zhang YH, Chan CK, J. Phys. Chem. A, 107(31), 5956 (2003)
- Pickup PG, Chem. Soc. Faraday. Trans., 86, 3631 (1990)
- Sethupathy M, Sethuraman V, Manisankar P, Soft Nanoscience Lett., 3, 37 (2013)
- Romero M, Faccio R, Mombru AW, Mater. Lett., 172, 1 (2016)
- Wang L. Yang W, Li XD, Evans G, Electrochem. Solid State Lett., 13, 7 (2010)
- Wang ZX, Huang XJ, Chen LQ, Electrochem. Solid State Lett., 6, 40 (2003)
- Wieczorek W, Florjanczyk Z, Stevens JR, Electrochim. Acta, 40(13-14), 2251 (1995)
- Dawar A, Chandra A, Phys. Lett. A, 376, 3604 (2012)
- Stramare S, Thangadurai V, Weppner W, Chem. Mater., 15, 3974 (2003)
- Simon L, Ruban L, Kumar A, Mater. Res. Innov., 21, 249 (2017)
- Ding Y, Zhang P, Long Z, Jiang Y, Xu F, J. Alloy. Compd., 487, 507 (2009)
- Wu X, Huang J, Yu S, Ruan P, Sun R, Wong CP, Macromol. Res., DOI: 10.1007/s13233-020-8049-5 (2019).
- Hashmi SA, Chandra S, J. Mater. Sci. Eng., 34, 18 (1995)
- Sivaraj P, Abhilash KP, Nalini B, Selvin PC, Goel S, Yadav SK, J. Am. Ceram. Soc., 103(3), 1685 (2020)