화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.3, 369-380, June, 2020
Pulling rate, rotation speed 및 melt charge level 최적화에 의한 쵸크랄스키 공정 실리콘 단결정의 O2 불순물 최소화 설계
A Czochralski Process Design for Si-single Crystal O2 Impurity Minimization with Pulling Rate, Rotation Speed and Melt Charge Level Optimization
E-mail:
초록
대부분의 단결정 실리콘 잉곳은 초크랄스키(Czochralski(Cz)) 공정으로 제조된다. 그러나 단결정 실리콘 잉곳을 제품화 및 태양 전지 기판으로 가공하였을 때 산소 불순물이 있는 경우 낮은 효율성을 나타내는 경향이 있다. 단결정 Si-잉 곳의 생산을 위해서는 용융 Si를 녹인 다음 단결정 Si의 시드(Seed)로 결정화하는 초크랄스키(Cz) 공정을 도입한다. 용융된 다결정 Si-덩어리를 단결정 Si-잉곳으로 결정성장 될 때, 열 전달은 Cz-공정의 구조에서 중요한 역할을 한다. 본 연구에서 고품질 단결정 실리콘 잉곳을 얻기 위해 Cz-공정의 최적화된 설계를 구성하였다. 결정 성장 시뮬레이션로부터 결정성장을 위한 Pulling rate 및 Rotation speed에 최적의 변수값을 형성하기 위해 사용되었으며, 변형된 Cz-공정에 대한 연구 및 해당 결과가 논의되며 결정 성장 시뮬레이션을 사용하여 Cz-공정의 Pulling rate, Rotation speed 및 Melt charge level의 최적화된 설계로 인한 결정성장시 단결정 실리콘으로 유입되는 산소 농도 최소화를 설계하였다.
Most mono-crystalline silicon ingots are manufactured by the Czochralski (Cz) process. But If there are oxygen impurities, These Si-ingot tends to show low-efficiency when it is processed to be solar cell substrate. For making single-crystal Si- ingot, We need Czochralski (Cz) process which melts molten Si and then crystallizing it with seed of single-crystal Si. For melts poly Si-chunk and forming of single-crystalline Si-ingot, the heat transfer plays a main role in the structure of Cz-process. In this study to obtain high-quality Si ingot, the Cz-process was modified with the process design. The crystal growth simulation was employed with pulling rate and rotation speed optimization. Studies for modified Cz-process and the corresponding results have been discussed. The results revealed that using crystal growth simulation, we optimized the oxygen concentration of single crystal silicon by the optimal design of the pulling rate, rotation speed and melt charge level of Cz-process.
  1. Wang C, Zhang H, Wang TH, Ciszek TF, J. Cryst. Growth, 250(1-2), 209 (2003)
  2. Kulkarni MS, Holzer JC, Ferry LW, J. Cryst. Growth, 284, 35 (2005)
  3. Vorob'ev AN, Sid'ko AP, Kalaev VV, J. Cryst. Growth, 386, 226 (2014)
  4. Voronkov VV, Flaster R, J. Electrochem. Soc., 149(3), 167 (2002)
  5. Ammon W, Dornberger E, Oelkrug H, Weidner H, J. Cryst. Growth, 151, 273 (1995)
  6. Kim JH, Hanyang University Master’s Thesis(2007).
  7. von Ammon W, Friedrich J, Muller G, Handbook of Crystal Growth (second ed.), Elsevier, 45-104(2014).
  8. Ammon WV, Gelfgat Y, Gorbunov L, et al., “Proceedings of 6th PAMIR International Conference on Fundamental and Applied MHD,” 41(2005).
  9. Hwang DH, Doctor’s Thesis, Dept. Material Eng., Chungnam National Univ., Daejeon, Korea(2002).
  10. Kim JH, Master’s Thesis, Dept. Material Eng., Sungkunkwan Univ., Seoul, Korea(2007).
  11. Lee JS, Kim KH, Solar Cell Engineering, Seoul, Korea: Book Publication in GREEN Energy(2007).
  12. Sim BC, Kim WS, Zebib A, J. Thermophys. Heat Transf., 16, 553 (2002)
  13. Sim BC, Kim WS, Zebib Z, Journal of Heat Mass Transfer, 332, 473-486(2004).
  14. Rozgonyi GA, Deysher RP, Pearce CW, J. Electrochem. Soc., 123, 1910 (1976)
  15. Shockley W, Read WT, Phys. Rev., 87, 835 (1952)
  16. Lee YR, Jung JH, Photovoltaic Research, 4(3), 124 (2016)
  17. Shockley W. Read WT, Physical Review Journals, 87, 835 (1952)
  18. Kalaev VV, Lukanin DP, Zabelin VA, Makarov YN, Virbulis J, Dornberger E, von Ammon W, J. Cryst. Growth, 250(1-2), 203 (2003)
  19. Kakimoto K, Eguchi M, Watanabe H, Hibiya T, J. Cryst. Growth, 126, 435 (1993)