화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.4, 505-511, July, 2020
제조조건에 따른 생분해성 PDO 필라멘트의 물리적 특성
Physical Nature of Biodegradable Polydioxanone Filaments upon Synthetic Conditions
E-mail:
초록
의학분야에서 polydioxanone(PDO)는 생체 안전성, 생분해도 및 기계적 강성의 이점으로 인해 기초적 및 실용적 연구 분야에서 큰 관심을 받고 있다. 선행연구 결과에서 PDO의 생화학적 구조는 증명되었으나, 단계별 제조조건 중 촉매와 세척 간 상관관계가 PDO의 물리적 특성에 미치는 영향에 대한 연구는 미미한 실정이다. 따라서 본 연구에서는 PDO의 촉매와 세척의 변화에 따른 물리적 강성 및 생분해도의 변화를 추적하였다. 샘플 중 가장 많은 ppm의 촉매(30 ppm)와 진공세척시간(3시간)을 도입한 PDO-3-30 샘플은 물리적 특성에서 가장 우수한 결과를 도출하였으나, 열역학 및 생분해도에서는 타 샘플대비 상대적으로 낮은 결과를 드러냈다. 모든 샘플의 특성을 비교하였을 때, 촉매의 양은 중합에서 가장 중요한 역할을 한다. 여기에서, 세척등급 또한 보다 세밀한 PDO 필라멘트의 물리적 특성을 제어할 수 있는 보조조건이 될 수 있다.
In the medical field, polydioxanone (PDO) has increasingly attracted scientific interests in both fundamental research and applications for synthesizing sutures due to its safety, biodegradability, and mechanical strength. Chemical pathways of the aforementioned architecture have already been proven via a plethora of multidisciplinary researches, however, the physical nature of PDO filaments by each stage of the synthetic condition has yet been solely observed in detail. The scope of the present study tracks a couple of pre- and post-fiberation to tailor the success in tunable physical strength with the variance of purification time and the dosage of a catalyst. We first fabricated PDO filaments using lauryl alcohol (C12H26O) and stannous octoate (C16H30O4Sn) as an initiator and a catalyst, respectively. PDO-3-30 with 3 h of vacuum purification and 30 ppm dosage of a catalyst led to unfavorable thermal properties and degradability but an increase in physical properties including tensile, flexural, and Izod impact strengths. From thermal and physical profiles, it was confirmed that the amount of a catalyst is a major driving factor of polymerization while the degree of purification could be an additive aid for more sensitive control of the physical nature of PDO filaments.
  1. Seitz JM, Durisin M, Goldman J, Drelich JW, Adv. Healthcare Mater., 4, 1915 (2015)
  2. Asgari M, Hang R, Wang C, Yu Z, Li Z, Xiao Y, Metals, 8, 212 (2018)
  3. Zia KM, Zuber M, Bhatti IA, Barikani M, Sheikh MA, Int. J. Biol. Macromol., 44, 18 (2009)
  4. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS, Arthroscopic, 14, 726 (1998)
  5. Middleton JC, Tipton AJ, Biomaterials, 21, 2335 (2000)
  6. Magdalena BJ, Bedzinski R, Kozlowska A, Meccanica, 48, 721 (2013)
  7. Stivaros SM, Williams LR, Senger C, Wilbraham L, Laasch HJ, Eur. Radio., 20, 1069 (2010)
  8. Novotny L, Crha M, Rauser P, Hep A, Misik J, Necas A, Vondrys D, J. Thorac. Cardiovasc. Surg, 143, 437 (2012)
  9. Mouthuy PA, Zargar N, Hakimi O, Lostis E, Carr A, Biofabrication, 7, 025006 (2015)
  10. Goonoo N, Jeetah R, Bhaw-Luximon A, Jhurry D, Eur. J. Pharm. Biopharm., 97, 371 (2015)
  11. Wang CE, Zhang PH, Autex. Res. J, 16, 80 (2016)
  12. Haidegger T, Sandor J, Benyo Z, Surg. Endosc., 25, 681 (2011)
  13. Owens BD, Algeri J, Liang V, DeFroda S, J Shoulder Elbow Surg., 28, 1897 (2019)
  14. Yu D, Sun L, Xue W, Zeng Z, CSIJ, 3, 1 (2017)
  15. Yang KK, Wang XL, Wang YZ, Huang HX, Mater. Chem. Phys., 87(1), 218 (2004)
  16. Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K, Eur. J. Pharm. Biopharm., 67, 1 (2007)
  17. Kim CW, Kim DS, Kang SY, Marquez M, Joo YL, Polymer, 45, 5097 (2006)
  18. Abhari RE, Mouthuy PA, Zargar N, Brown C, Carr A, J. Mech. Behav. Biomed. Mater., 67, 127 (2017)
  19. Yang KK, Wang XL, Wang YZ, Huang HX, Mater. Chem. Phys., 87(1), 218 (2004)
  20. Zhu L, Liang K, Ji Y, J. Mech. Behav. Biomed. Mater, 44, 35 (2015)
  21. Ji W, Yang F, Seyednejad H, Chen Z, Hennink WE, Anderson JM, Jansen JA, Biomaterials, 33, 6604 (2012)
  22. Yang ZJ, Best SM, Cameron RE, Adv. Mater., 21(38-39), 3900 (2009)