화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.6, 596-604, June, 2020
Development of a Program for Analyzing Dielectric Relaxation and Its Application to Polymers: Nitrile Butadiene Rubber
E-mail:
To characterize the dielectric relaxation embedded in polymers, we developed a program algorithm that analyzes the relaxation processes from dielectric permittivity versus frequency data based on governing functions such as the Havriliak-Negami function including the conductivity contribution. With the help of the developed simulation program, we have identified three processes: an α process due to rotational and segmental motions of the C-C bond, an α’ process attributed to the fluctuation of the end-to-end dipole vector of the polymer chain, and the conduction contribution observed at high temperatures and low frequencies. The activation energy and glass transition temperature for the two main relaxations were independently determined from both the imaginary permittivity versus frequency and temperature by assuming Arrhenius dependence and the Vogel-Fulcher-Tamman law. The results obtained by the two methods for α and α’ relaxations were compared with each other and with that obtained by differential scanning calorimetry.
  1. Mazloomi K, Gomes C, Renew. Sust. Energ. Rev., 16, 3024 (2012)
  2. Barth RR, Simmons KL, Marchi CS, Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties, and Gap Analysis, Oak Ridge, TN, 2013.
  3. Pehlivan-Davis S, Polymer Electrolyte Membrane (PEM) Fuel Cell Seals Durability, Loughborough, 2015.
  4. Menon NC, Kruizenga AM, Alvine KJ, Marchi CS, Nissen A, Brooks K, in Proceedings of the ASME 2016 Pressure Vessels and Piping Conference PVP 2016, British Columbia, 2016.
  5. Fujiwara H, Ono H, Nishimura S, Int. J. Hydrog. Energy, 40(4), 2025 (2015)
  6. Nishimura S, International Symposium of Hydrogen Polymers Team, HYDROGENIUS, Kyushu University, 2017.
  7. Zuttel A, Borgschulte A, Schlapbach L, Hydrogen as a Future Energy Carrier, Wiley, Weinheim, 2008.
  8. Ball M, Weeda M, Int. J. Hydrog. Energy, 40(25), 7903 (2015)
  9. Kremer F, Schonhals A, Broadband Dielectric Spectroscopy, Springer Verlag, Berlin, 2003.
  10. Runt JJ, Fitzgerald JJ, Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications, Washington, DC, 1997.
  11. Ku C, Liepins R, Electrical Properties of Polymers, Hanser Publishers, Munich, 1987.
  12. Fernandez-Sanchez C, McNeil CJ, Rawson K, TrAC Trends Anal Chem., 24, 37 (2005)
  13. Dastan D, Banpurkar A, J. Mater. Sci. Mater. Electron., 28, 3851 (2016)
  14. Dastan D, Gosavi SW, Chaure NB, Macromol. Symp., 347, 81 (2015)
  15. Williams G, Trans. Faraday Soc., 62, 2091 (1966)
  16. Brand R, Lunkenheimer P, Schneider U, Loidl A, Phys. Rev. B, 62, 8878 (2000)
  17. Smith GD, Bedrov D, J. Polym. Sci. B: Polym. Phys., 45(6), 627 (2007)
  18. Dastan D, Appl. Phys. A, 123, 699 (2017)
  19. Pietrasik J, Gaca M, Zaborski M, Okrasa L, Boiteux G, Gain O, Eur. Polym. J., 45, 3317 (2009)
  20. Mansour SA, Al-Ghoury ME, Shalaan E, El Eraki MHI, Abdel-Bary EM, J. Appl. Polym. Sci., 122(2), 1226 (2011)
  21. Zhu X, Yang J, Dastan D, Garmestani H, Fan R, Shi Z, Compos. Part A, 125, 105521 (2019)
  22. Feldman Y, Puzenko A, Ryabov Y, in Fractals, Diffusion, and Relaxation in Disordered Complex Systems, John Wiley & Sons, New York, NY, pp 1-25 2006.
  23. Schonhals A, Habilitation Thesis, Technical University Berlin, Berlin, 1996.
  24. Schlosser E, Schonhals A, Colloid Polym. Sci., 267, 963 (1989)
  25. Cole KS, Cole RH, J. Chem. Phys., 9, 341 (1941)
  26. Davidson DW, Cole RH, J. Chem. Phys., 19, 1484 (1951)
  27. Havriliak S, Negami S, J. Polym. Sci. Part C Polym. Symp., 14, 99 (1966)
  28. Iglesias TP, Vilao G, Reis JC, J. Appl. Phys., 122, 074102 (2017)
  29. Debye P, Ber. Dt. Phys. Ges., 15, 777 (1913); reprinted 1954 in Debye P, (1913). The Collected Papers of Peter J.W. Debye, Inderscience, New York.
  30. Kao KC, Dielectric Phenomena in Solids, Elsevier Science, London, UK, 2004.
  31. Schonhals A, Kremer F, Hofmann A, Fischer EW, Schlosser E, Phys. Rev. Lett., 70, 3459 (1993)
  32. Langer J, Phys. Today, 60, 8 (2007)
  33. Garca-Coln LS, Del Castillo LF, Goldstein P, Phys. Rev. B, 40, 7040 (1989)
  34. Vogel H, Phys. Z., 22, 645 (1921)
  35. Fulcher GS, J. Am. Ceram. Soc., 8, 339 (1925)
  36. Tammann G, Hesse W, Z. Anorg. Allg. Chem., 156, 245 (1926)
  37. Menegotto J, Demont P, Bernes A, Lacabanne C, J. Polym. Sci. B: Polym. Phys., 37(24), 3494 (1999)
  38. Arrhenius S, Z. Phys. Chem., 4, 96 (1889)
  39. O'Connell PA, McKenna GB, J. Chem. Phys., 110(22), 11054 (1999)
  40. Axelrod N, Axelrod E, Gutina A, Puzenko A, Ishai PB, Feldman Y, Meas. Sci. Technol., 15, 755 (2004)
  41. Nelder JA, Mead R, Comput. J., 7, 308 (1965)
  42. Millsian Inc., USA Cranbury, NJ. Millsian 2.1 beta software, https://www.millsian.com/download.shtml, Accessed 13 August 2019.
  43. Kim KY, Kang HK, Lee C, Ryu BH, J. Korean Soc. Saf., 18, 57 (2003)
  44. BioLogic Science Instruments, USA Knoxville. VSP-300 The Ultimate versatile multipotentiostat catalog, https://www.bio-logic.net/products/multichannel-conductivity/vsp-300-6-channels-electrochemical-workstation, Accessed 13 August 2019.