화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.7, 1251-1257, July, 2020
Synthesis of size-controlled Ag nanowires via a seed-mediated growth method
E-mail:
Seed-mediated growth has attracted much attention due to the wide range of controllability in size and shape, improved reproducibility, and capability to form bimetallic structures. Especially, seed-mediated growth of Ag has been extensively studied due to the excellent electrical, thermal, optical, and catalytic properties of Ag, but it has been conducted mainly for isotropic seeds such as nanocubes, and relatively little attention has been given to anisotropic seeds such as nanowires. We studied the seed-mediated growth of Ag nanowires for their size control, exploring the effect of hydrochloric acid (HCl), capping agents, and seeds to find the experimental condition for heterogeneous nucleation. By the optimized condition, the length and diameter were grown up to nearly 7 and 12 times, respectively, by those of seeds. Interestingly, for the condition that causes homogeneous nucleation, Ag particles of various shapes, including nanocubes, nanowires, and micro rods, were synthesized. The size-controlled Ag nanowires and Ag particles of various shapes obtained in this work are expected to be applied for the study of low resistance electrodes and the size- and shape-dependent properties of metal nanomaterials.
  1. Xia Y, Gilroy KD, Peng HC, Xia X, Angew. Chem.-Int. Edit., 56, 60 (2017)
  2. Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia YN, Chem. Rev., 116(18), 10414 (2016)
  3. LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847 (1950)
  4. Lee JH, Lee P, Lee D, Lee SS, Ko SH, Cryst. Growth Des., 12, 5598 (2012)
  5. Zhang XY, Xu JJ, Wu JY, Shan F, Ma XD, Chen YZ, Zhang T, RSC Adv., 7, 8 (2017)
  6. Pietrobon B, McEachran M, Kitaev V, ACS Nano, 3, 21 (2009)
  7. Mayer M, Scarabelli L, March K, Altantzis T, Tebbe M, Kociak M, Bals S, Garcia de Abajo FJ, Fery A, Liz-Marzan LM, Nano Lett., 15, 5427 (2015)
  8. Luo M, Huang H, Choi SI, Zhang C, da Silva RR, Peng HC, Li ZY, Liu J, He Z, Xia Y, ACS Nano, 9, 10523 (2015)
  9. Zhang XY, Xue XM, Zhou HL, Zhao N, Shan F, Su D, Liu YR, Zhang T, Nanoscale, 10, 15468 (2018)
  10. Rycenga M, Cobley CM, Zeng J, Li WY, Moran CH, Zhang Q, Qin D, Xia YN, Chem. Rev., 111(6), 3669 (2011)
  11. Niu W, Zhang L, Xu G, Nanoscale, 5, 3172 (2013)
  12. Zhang T, Song YJ, Zhang XY, Wu JY, Sensors, 14, 5860 (2014)
  13. Xia X, Zeng J, Zhang Q, Moran CH, Xia Y, J. Phys. Chem. C, 116, 21647 (2012)
  14. Zeng J, Zheng YQ, Rycenga M, Tao J, Li ZY, Zhang QA, Zhu YM, Xia YN, J. Am. Chem. Soc., 132(25), 8552 (2010)
  15. Hoppe CE, Lazzari M, Pardinas-Blanco I, Lopez-Quintela MA, Langmuir, 22(16), 7027 (2006)
  16. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE, Dalton Trans., 44, 17883 (2015)
  17. Chen ZF, Chang JW, Balasanthiran C, Milner ST, Rioux RM, J. Am. Chem. Soc., 141(10), 4328 (2019)
  18. Im SH, Lee YT, Wiley B, Xia Y, Angew. Chem.-Int. Edit., 44, 2154 (2005)
  19. Wiley BJ, Herricks T, Sun Y, Xia Y, Nano Lett., 4, 1733 (2004)
  20. Schuette WM, Buhro WE, ACS Nano, 7, 3844 (2013)
  21. Chen Z, Balankura T, Fichthorn KA, Rioux RM, ACS Nano, 13, 1849 (2019)
  22. Wiley B, Sun YG, Xia YN, Langmuir, 21(18), 8077 (2005)
  23. Korte KE, Skrabalak SE, Xia Y, J. Mater. Chem., 18, 437 (2008)
  24. Zhang QA, Li WY, Moran C, Zeng J, Chen JY, Wen LP, Xia YN, J. Am. Chem. Soc., 132(32), 11372 (2010)
  25. Lin ZW, Tsao YC, Yang MY, Huang MH, Chem. Eur. J., 22, 2326 (2016)
  26. Jeon SJ, Yazdi S, Thevamaran R, Thomas EL, Cryst. Growth Des., 17, 284 (2017)
  27. Lin X, Lin S, Liu YL, Gao MM, Zhao HY, Liu BK, Hasi W, Wang L, Langmuir, 34(21), 6077 (2018)
  28. Chen C, Wang L, Yu HJ, Jiang GH, Yang Q, Zhou JF, Xiang WD, Zhang JF, Mater. Chem. Phys., 107(1), 13 (2008)
  29. Tsuji M, Tang X, Matsunaga M, Maeda Y, Watanabe M, Cryst. Growth Des., 10, 5238 (2010)
  30. Bergin SM, Chen YH, Rathmell AR, Charbonneau P, Li ZY, Wiley BJ, Nanoscale, 4, 1996 (2012)
  31. Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP, Phys. Rev. B, 73, 235409 (2006)
  32. Greer JR, Nix WD, Phys. Rev. B, 73, 1 (2006)
  33. Zhu Z, Qin Q, Xu F, Fan F, Ding Y, Zhang T, Wiley BJ, Wang ZL, Phys. Rev. B, 85, 045443 (2012)
  34. Peng C, Zhan Y, Lou J, Small, 8, 1889 (2012)
  35. Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao SX, Nat. Commun., 4, 1742 (2013)
  36. Uchic MD, Dimiduk DM, Florando JN, Nix WD, Science, 305, 986 (2004)
  37. Mahmoud MA, O’Neil D, El-Sayed MA, Nano Lett., 14, 743 (2014)
  38. Thevamaran R, Lawal O, Yazdi S, Jeon SJ, Lee JH, Thomas EL, Science, 354(6310), 312 (2016)
  39. Da Silva RR, Yang M, Choi SI, Chi M, Luo M, Zhang C, Li ZY, Camargo PHC, Ribeiro SJL, Xia Y, ACS Nano, 10, 7892 (2016)
  40. Sun Y, Mayers B, Herricks T, Xia Y, Nano Lett., 3, 955 (2003)
  41. Sun Y, Gates B, Mayers B, Xia Y, Nano Lett., 2, 165 (2002)
  42. Shi HY, Hu B, Yu XC, Zhao RL, Ren XF, Liu SL, Liu JW, Feng M, Xu AW, Yu SH, Adv. Funct. Mater., 20(6), 958 (2010)
  43. Araki T, Jiu J, Nogi M, Koga H, Nagao S, Sugahara T, Suganuma K, Nano Res., 7, 236 (2014)
  44. Zhang Y, Guo J, Xu D, Sun Y, Yan F, ACS Appl. Mater. Interfaces, 9, 25465 (2017)