Journal of Industrial and Engineering Chemistry, Vol.88, 366-372, August, 2020
Effect of axial ligand on the performance of hemin based catalysts and their use for fuel cells
E-mail:,
A new cascade type cathodic catalyst containing hemin and glucose oxidase (GOx) is suggested for enhancing the performances of enzymatic biofuel cells (EBCs). In the cathodic catalyst, the upper GOx layer generates hydrogen peroxide (H2O2) by glucose oxidation reaction (GOR), and then actual cathodic current is determined by H2O2 reduction reaction (HRR) catalyzed by hemin, using the pre-produced H2O2. The reaction potential of hemin is positively shifted by the formation of coordinate bond between its core ions and amine groups, meaning that that of HRR deciding reduction onset potential of the catalyst is positively shifted. As materials providing the ligand containing amine groups, polyethyle- neimine (PEI) and imidazole propionic acid (IPA) are considered. According to evaluations, the reaction potential for HRR is favorably moved as the amounts of available ligand and coordinate bond increase. When IPA is applied, the reduction onset potential for HRR is shifted from 0.4 to 0.51 V and reduction reaction rate also increases from 55 to 86 mAcm-2. Based on that, the EBC using catalyst containing IPA shows superior performances, such as maximum power density of 66 mWcm-2 and open circuit voltage of 0.65 V.
- Zhu ZG, Wang YR, Minteer SD, Zhang YHP, J. Power Sources, 196(18), 7505 (2011)
- Kakehi N, Yamazaki T, Tsugawa W, Sode K, Biosens. Bioelectron., 22(9-10), 2250 (2007)
- Christwardana M, Chung Y, Kwon Y, NPG Asia Mater, e386 (2017).
- Chung Y, Ahn Y, Kim DH, Kwon Y, J. Power Sources, 337, 152 (2017)
- Kang S, Hyun K, Chung Y, Kwon Y, Appl. Surf. Sci., 507, 145007 (2020)
- Christwardana M, Kim DH, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 180 (2018)
- Hyun KH, Kang SY, Kwon YC, Korean J. Chem. Eng., 36(3), 500 (2019)
- Wang X, Kim JH, Choi YB, Kim HH, Kim CJ, Korean J. Chem. Eng., 36(7), 1172 (2019)
- Topcagic S, Minteer SD, Electrochim. Acta, 51(11), 2168 (2006)
- Mano N, Heller A, J. Electrochem. Soc., 150(8), A1136 (2003)
- Barriere F, Ferry Y, Rochefort D, Leech D, Electrochem. Commun., 6(3), 237 (2004)
- Ji J, Woo J, Chung Y, Joo SH, Kwon Y, Chem. Eng. J., 381, 122679 (2020)
- Ji J, Woo J, Chung Y, Joo SH, Kwon Y, Appl. Surf. Sci., 511, 145449 (2020)
- Frattini D, Hyun K, Kwon Y, J. Ind. Eng. Chem., 80, 508 (2019)
- Christwardana M, Frattini D, Accardo G, Yoon SP, Kwon Y, J. Power Sources, 396, 1 (2018)
- Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz JP, Gorgy K, Lenouvel F, Mathe S, Porcu P, Cosnier S, PLoS One, 5(5), 1 (2010)
- MacVittie K, Halamek J, Halamkova L, Southcott M, Jemison WD, Lobel R, Katz E, Energy Environ. Sci., 6(1), 81 (2013)
- Castorena-Gonzalez JA, Foote C, MacVittie K, Halamek J, Halamkova L, Martinez-Lemus LA, Katz E, Electroanalysis, 25(7), 1579 (2013)
- Chung Y, Hyun KH, Kwon Y, Nanoscale, 8(2), 1161 (2016)
- Chung Y, Ahn Y, Christwardana M, Kim H, Kwon Y, Nanoscale, 8(17), 9201 (2016)
- Kang SH, Yoo KS, Chung YJ, Kwon YC, J. Ind. Eng. Chem., 62, 329 (2018)
- Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 1 (2016)
- Djoko KY, Chong LX, Wedd AG, Xiao ZG, J. Am. Chem. Soc., 132(6), 2005 (2010)
- Ji J, Joh HJ, Chung Y, Kwon Y, Nanoscale, 9(41), 15998 (2017)
- Jia W, Jin C, Xia W, Muhler M, Schuhmann W, Stoica L, Chem. - A Eur. J., 18(10), 2783 (2012)
- Chung Y, Ji J, Kwon Y, J. Mater. Chem. C, 7(37), 11597 (2019)
- Christwardana M, Chung YJ, Kim DH, Kwon YC, J. Ind. Eng. Chem., 71, 435 (2019)
- Koushanpour A, Gamella M, Guz N, Katz E, Electroanalysis, 29(4), 950 (2017)
- Reuillard B, Gentil S, Carriere M, Le Goff A, Cosnier S, Chem. Sci., 6(9), 5139 (2015)
- Elouarzaki K, Bourourou M, Holzinger M, Le Goff A, Marks RS, Cosnier S, Energy Environ. Sci., 8(7), 2069 (2015)
- Zhang Y, Xia Z, Liu H, Yang M, Lin L, Li Q, Sens. Actuators B-Chem., 188, 496 (2013)
- Lim WG, Mun Y, Cho A, Jo C, Lee S, Han JW, Lee J, ACS Nano, 12(6), 6013 (2018)
- Su X,Bromberg L, Tan KJ, Jamison TF, Padhye LP, Hatton TA, Environ. Sci. Technol. Lett., 4(4), 161 (2017)
- Ma QA, Ai SY, Yin HS, Chen QP, Tang TT, Electrochim. Acta, 55(22), 6687 (2010)
- Loetzbeyer T, Schuhmann W, Schmidt HL, J. Electroanal. Chem., 395(1-2), 339 (1995)
- Sagara T, Takeuchi S, Kumazaki K, Nakashima N, J. Electroanal. Chem., 396(1-2), 525 (1995)
- Nakashima N, Tokunaga T, Owaki H, Murakami H, Sagara T, Colloids Surf. A: Physicochem. Eng. Asp., 169(1-3), 163 (2000)
- Wanag GX, Zhou Y, Wang M, Bao WJ, Wang K, Xia XH, Chem. Commun., 51(4), 689 (2015)
- Poulos TL, Chem. Rev., 114(7), 3919 (2014)
- Tsuchida E, Honda K, Hasegawa E, Biochim. Biophys. Acta - Protein Struct., 393(2), 483 (1975)
- Battistuzzi G, Borsari M, Cowan JA, Ranieri A, Sola M, J. Am. Chem. Soc., 124(19), 5315 (2002)
- Chen SS, CrystEngComm, 18(35), 6543 (2016)
- Christwardana M, Chung YJ, Tannia DC, Kwon YC, Korean J. Chem. Eng., 35(12), 2421 (2018)
- Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
- Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
- Frattini D, Accardo G, Duarte KDZ, Kim DH, Kwon Y, Appl. Energy, 261, 114391 (2020)
- Xu X, Huang D, Cao K, Wang M, Zakeeruddin SM, Gratzel M, Sci. Rep., 3(1), 1489 (2013)
- Huang W, Hao Q, Lei W, Wu L, Xia X, Mater. Res. Express, 1(4), 45601 (2014)
- Veitch NC, Phytochemistry, 65(3), 249 (2004)
- Munro OQ, Madlala PS, Warby RAF, Seda TB, Hearne G, Inorg. Chem., 38(21), 4724 (1999)
- Marques HM, Munro OQ, Munro T, de Wet M, Vashi PR, Inorg. Chem., 38(10), 2312 (1999)