화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.88, 285-291, August, 2020
Optimal formation of uniform-phase supported lipid bilayers from phospholipid.monoglyceride bicellar mixtures
E-mail:,
Supported lipid bilayers (SLBs) spanning hydrophilic surfaces are industrially attractive biomimetic coatings that mimic critical aspects of lipid membrane interfaces and are increasingly used in applications spanning medicine, biotechnology, and environmental science. The use of adsorbing bicelle lipid nanostructures composed of long- and short-chain phospholipid mixtures is an effective selfassembly driven process for streamlined SLB fabrication. However, existing studies use synthetic shortchain phospholipids as a necessary bicelle component and such materials are not practical for industrial applications. Herein, we investigated optimal conditions to fabricate SLBs from bicelles containing an industrially useful monoglyceride called monocaprin (MC) in place of short-chain phospholipids. The ratio of long-chain phospholipid to MC along with total lipid concentration were systematically tested. Quartz crystal microbalance-dissipation (QCM-D) and time-lapse fluorescence microscopy experiments were performed to characterize bicelle adsorption onto silicon dioxide surfaces, and fluorescence recovery after photobleaching (FRAP) measurements were conducted to evaluate lateral lipid diffusion within the fabricated lipid adlayers. Depending on bicelle parameters, high-quality SLB formation with uniform phase properties was achieved and optimal ranges are described to ensure target performance outcomes without phase separation. Together, our findings demonstrate that MC-containing bicelles are useful tools to form high-quality SLBs suitable for surface coating and biosensing applications.
  1. Hardy GJ, Nayak R, Zauscher S, Curr. Opin. Colloid Interface Sci., 18, 448 (2013)
  2. Jackman JA, Tabaei SR, Zhao Z, Yorulmaz S, Cho NJ, ACS Appl. Mater. Interfaces, 7, 959 (2015)
  3. Su H, Liu HY, Pappa AM, Hidalgo TC, Cavassin P, Inal S, Owens RM, Daniel S, ACS Appl. Mater. Interfaces, 11, 43799 (2019)
  4. Jackman JA, Ferhan AR, Cho NJ, Bull. Chem. Soc. Jpn., 92, 1404 (2019)
  5. Jackman JA, Cho NJ, Nishikawa M, Yoshikawa G, Mori T, Shrestha LK, Ariga K, Chem. Asian J., 13, 3366 (2018)
  6. Oncel MOO, Garipcan B, Inci F, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering, Springer, pp.193 2019.
  7. Verstappen JF, Jin J, Kocer G, Haroon M, Jonkheijm P, Bakker AD, Klein-Nulend J, Jaspers RT, J. Biomed. Mater. Res. A, 108, 923 (2020)
  8. Soler M, Li X, John-Herpin A, Schmidt J, Coukos G, Altug H, ACS Sens., 3, 2286 (2018)
  9. Elnaggar MA, Han DK, Joung YK, J. Ind. Eng. Chem., 80, 811 (2019)
  10. Wagh P, Escobar IC, Environ. Progress Sustain. Energy, 38, e13215 (2019)
  11. Kaufman Y, Berman A, Freger V, Langmuir, 26(10), 7388 (2010)
  12. Nikoleli GP, Nikolelis D, Siontorou CG, Karapetis S, Sensors, 18, 284 (2018)
  13. Nikoleli GP, Adv. Food Nutr. Res., 91, 301 (2020)
  14. Gilbert J, Vargas EA, J. Toxicol. Toxin Rev., 22, 381 (2003)
  15. Bratakou S, Nikoleli GP, Siontorou CG, Karapetis S, Nikolelis DP, Tzamtzis N, Electroanalysis, 28, 2171 (2016)
  16. Ariga K, Leong DT, Mori T, Adv. Funct. Mater., 28, 170290 (2018)
  17. Ariga K, Watanabe S, Mori T, Takeya J, NPG Asia Mater., 10, 90 (2018)
  18. Komiyama M, Yoshimoto K, Sisido M, Ariga K, Bull. Chem. Soc. Jpn., 90, 967 (2017)
  19. Ariga K, Mori T, Li J, Langmuir, 35, 3585 (2018)
  20. Keller C, Glasmastar K, Zhdanov V, Kasemo B, Phys. Rev. Lett., 84, 5443 (2000)
  21. Jackman JA, Cho NJ, Langmuir, 36(6), 1387 (2020)
  22. Marcotte I, Auger M, Concepts Magn. Reson. A, 24, 17 (2005)
  23. Ram P, Prestegard J, Biochim. Biophys. Acta Biomembr., 940, 289 (1988)
  24. van Dam L, Karlsson G, Edwards K, Biochim. Biophys. Acta Biomembr., 1664, 241 (2004)
  25. Nieh MP, Raghunathan VA, Glinka CJ, Harroun TA, Pabst G, Katsaras J, Langmuir, 20(19), 7893 (2004)
  26. van Dam L, Karlsson G, Edwards K, Langmuir, 22(7), 3280 (2006)
  27. Durr UH, Soong R, Ramamoorthy A, Progress Nucl. Magn. Reson. Spectrosc., 69, 1 (2013)
  28. De Angelis AA, Opella SJ, Nat. Protoc., 2, 2332 (2007)
  29. Durr UHN, Gildenberg M, Ramamoorthy A, Chem. Rev., 112(11), 6054 (2012)
  30. Zeineldin R, Last JA, Slade AL, Ista LK, Bisong P, O'Brien MJ, Brueck SRJ, Sasaki DY, Lopez GP, Langmuir, 22(19), 8163 (2006)
  31. Tabaei SR, Jonsson P, Branden M, Hook F, J. Struct. Biol., 168(1), 200 (2009)
  32. Morigaki K, Kimura S, Okada K, Kawasaki T, Kawasaki K, Langmuir, 28(25), 9649 (2012)
  33. Saeem Q, Zhang ZF, Petretic A, Gradinaru CC, Macdonad PM, Biomacromolecules, 16(3), 1032 (2015)
  34. Yamada NL, Sferrazza M, Fujinami S, Phys. B Condens. Matter, 551, 222 (2018)
  35. Kolahdouzan K, Jackman JA, Yoon BK, Kim MC, Johal MS, Cho NJ, Langmuir, 33(20), 5052 (2017)
  36. Sut TN, Jackman JA, Cho NJ, Langmuir, 35(25), 8436 (2019)
  37. Sut TN, Jackman JA, Yoon BK, Park S, Kolandouzan K, Ma GJ, Zhdanov VP, Cho NJ, Langmuir, 35(32), 10658 (2019)
  38. Sut TN, Park S, Choe Y, Cho NJ, Langmuir, 35(47), 15063 (2019)
  39. Tabaei SR, Choi JH, Zan GH, Zhdanov VP, Cho NJ, Langmuir, 30(34), 10363 (2014)
  40. Thormar H, Bergsson G, Gunnarsson E, Georgsson G, Witvrouw M, Steingrimsson O, De Clercq E, Kristmundsdottir T, Sex. Transm. Infect., 75, 181 (1999)
  41. Kristmundsdottir T, Arnadottir SG, Bergsson G, Thormar H, J. Pharm. Sci., 88, 1011 (1999)
  42. Umerska A, Cassisa V, Matougui N, Joly-Guillou ML, Eveillard M, Saulnier P, Eur. J. Pharm. Biopharm., 108, 100 (2016)
  43. Thormar H, Hilmarsson H, Bergsson G, Appl. Environ. Microbiol., 72, 522 (2006)
  44. Jackman JA, Yoon BK, Li D, Cho NJ, Molecules, 21, 305 (2016)
  45. Conley AJ, Kabara JJ, Antimicrob. Agents Chemother., 4, 501 (1973)
  46. Yoon BK, Jackman JA, Valle-Gonzalez ER, Cho NJ, Int. J. Mol. Sci., 19, 1114 (2018)
  47. Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T, Antimicrob. Agents Chemother., 31, 27 (1987)
  48. Thormar H, Isaacs CE, Kim KS, Brown HR, Ann. N. Y. Acad. Sci., 724, 465 (1994)
  49. Jackman JA, Boyd RD, Elrod CC, J. Anim. Sci. Biotechnol., 11, 44 (2020)
  50. Jonsson P, Jonsson MP, Tegenfeldt JO, Hook F, Biophys. J., 95, 5334 (2008)
  51. Cho NJ, Frank CW, Kasemo B, Hook F, Nat. Protoc., 5, 1096 (2010)
  52. Tabaei SR, Jackman JA, Kim SO, Zhdanov VP, Cho NJ, Langmuir, 31(10), 3125 (2015)
  53. Yoon BK, Jackman JA, Kim MC, Sut TN, Cho NJ, Langmuir, 33(11), 2750 (2017)
  54. Yoon BK, Park S, Jackman JA, Cho NJ, Appl. Mater. Today, 19, 100598 (2020)
  55. Glover KJ, Whiles JA, Wu G, Yu NJ, Deems R, Struppe JO, Stark RE, Komives EA, Vold RR, Biophys. J., 8, 2163 (2001)
  56. Luchette PA, Vetman TN, Prosser RS, Hancock RE, Nieh MP, Glinka CJ, Krueger S, Katsaras J, Biochim. Biophys. Acta Biomembr., 1513, 83 (2001)
  57. Shintani M, Matubayasi N, J. Mol. Liq., 217, 62 (2016)
  58. Grant L, Tiberg F, Biophys. J., 82, 1373 (2002)
  59. Vacklin HP, Tiberg F, Thomas R, Biochim. Biophys. Acta Biomembr., 1668, 17 (2005)
  60. Nollert P, Kiefer H, Jahnig F, Biophys. J., 69, 1447 (1995)
  61. Cho NJ, Hwang LY, Solandt JJ, Frank CW, Materials, 6, 3294 (2013)
  62. Heerklotz H, Q. Rev. Biophys, 41, 205 (2008)