Applied Chemistry for Engineering, Vol.31, No.3, 323-327, June, 2020
이산화탄소 메탄화 공정 적용을 위한 Ni/CeO2-X 촉매의 반응 특성 연구
A Study on the Reaction Characteristics of Carbon Dioxide Methanation Catalyst for Full-Scale Process Application
E-mail:
초록
이산화탄소 메탄화 공정 적용을 위해 저온에서 우수한 활성을 나타내는 Ni/CeO2-X의 반응 특성을 조사하였다. 지지체인 CeO2-X는 Ce(NO3)3를 400 ℃에서 열처리하여 획득하였으며, 촉매는 함침법으로 제조되었다. 실험의 운전 변수로써 반응기 내부 압력, 유입가스 중 산소, 메탄, 황화수소의 조성 및 반응 온도에 대하여 수행하였다. Ni/CeO2-X를 이용한 이산화탄소 메탄화 반응에서 압력이 1 bar에서 3 bar로 증가함에 따라 CO2 전환율은 25% 이상 증가하였으며, 낮은 반응 온도에서 증가폭이 크게 나타났다. 유입가스 중 산소와 메탄은 촉매의 CO2 전환율을 최대 16, 4%씩 감소시켰으며, 산소와 메탄의 농도가 높아질수록 CO2 전환율의 감소율이 증가하는 경향을 나타내었다. 또한 황화수소는 촉매의 CO2 전환율을 최대 7% 감소시켰으며 촉매의 비활성화를 야기하였다. 본 연구의 결과들은 이산화탄소의 메탄화 공정기초 자료로 유용하게 사용될 수 있을 것이다.
The reaction characteristics of Ni/CeO2-X which is highly efficient at a low temperature was investigated for an application to carbon dioxide methanation process. The CeO2-X support was obtained by the heat treatment of Ce(NO3)3 at 400 ℃ and the catalyst was preparedby impregnation process. The operating parameters of the experiment were the internal pressure of the reactor, the composition of oxygen, methane, and hydrogen sulfide in the inlet gas and the reaction temperature. When Ni/CeO2-X was used for the carbon dioxide methanation reaction, the CO2 conversion rate increased by more than 25% as the pressure increased from 1 to 3 bar. The increase was large at a low reaction temperature. When both oxygen and methane were in the inlet gas, the CO2 conversion rate of the catalyst decreased by up to 16 and 4%, respectively. As the concentration of oxygen and methane increased, the reduction rate of the CO2 conversion rate tended to increase. In addition, the hydrogen sulfide in the inlet gas reduced the CO2 conversion rate by up to 7% and caused catalyst deactivation. The results of this study will be useful as basic data for the carbon dioxide methanation process.
- Chae SC, Jang YN, Ryu KW, J. Geol. Soc. Korea, 45, 527 (2009)
- Lee J, Moon D, Chang S, J. Environ. Sci. Int., 28, 65 (2019)
- Hashimoto K, SpringerBriefs in Energy, 5-17, Springer Singapore, Singapore (2019).
- Mora MAM, Vergara CP, Leiva MA, Delgadillo SAM, Rosa-Dominguez ER, J. Environ. Manage., 183, 998 (2016)
- Jurgensen L, Ehimen EA, Born J, Holm-Nielsen JB, Bioresour. Technol., 178, 323 (2015)
- Lee K, Cho YH, Kim S, Lee A, Choi JY, Mag. Korean Sol. Energy Soc., 15, 2 (2017)
- Guo X, Traitangwong A, Hu M, Zuo C. Meeyoo V, Peng Z, Li C, Energ. Fuel, 32, 3681 (2018)
- Sharma S, Hu ZP, Zhang P, McFarland EW, Metiu H, J. Catal., 278(2), 297 (2011)
- Baysal Z, Kureti S, Appl. Catal. B: Environ., 262, 118300 (2020)
- Wang K, Jiang R, Peng T, Chen X, Dai W, Fu X, Appl. Catal. B: Environ., 256, 117780 (2019)
- Mills GA, Steffgen FW, Catal. Rev., 8, 159 (1974)
- Frey M, Romero T, Roger AC, Edouard D, Catal. Today, 273, 83 (2016)
- Goodman DJ, Methanation of Carbon Dioxide, Master’s Dissertation, University of California, Los Angeles (2013).
- Ahn W, Lee H, Lee Y, Son S, Jeong W, Chung M, Park K, Ahn H, J. Korean Soc. Environ. Technol., 15, 197 (2014)
- Kim JH, Ryu JH, Kang SH, Yoo YD, Kim JW, Go DJ, Jung M, Lee JM, Clean Technol., 24(2), 99 (2018)
- Ocampo F, Louis B, Kiennemann A, Roger AC, Mater. Sci. Eng., 19, 012007 (2011)
- Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F, RSC Adv., 2, 2358 (2012)
- Rasi S, Lantela J, Rintala J, Fuel, 115, 539 (2014)
- Park YG, J. Korea Soc. Waste Manag., 36, 717 (2019)
- Yeom G, Seo M, Baek Y, Trans. Korean Hydrog. New Energy Soc., 30, 14 (2019)
- Bakar WAWA, Ali R, Toemen S, J. Nat. Gas Chem., 20, 585 (2011)