화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.87, 152-161, July, 2020
New metal-free nanolubricants based on carbon-dots with outstanding antiwear performance
E-mail:
Nanoparticles have already demonstrated a good performance in improving the wear and/or coefficient of friction when used as nanolubricants. Nevertheless, they show two main drawbacks: most of them are metal-based and, therefore, eco-unfriendly, and they are mostly hydrophilic and, consequently, unstable in organic media, which finally drives to aggregation/sedimentation and the loose of the good properties. In this work, we carry out the synthesis of carbon-based nanoparticles for additives in lubricants from two different approaches: either using ionic liquids as carbons source, or using glutathione as carbon source and decorating the so-obtained carbon dots with the big organic cations of the ionic liquid. The final materials (diameters between 2.2 and 3.5 nm) were characterized by TEM, FTIR, XPS, and luminescent methodologies, finding long-term stability of the suspensions in organic media (≥15 days). Carbon dots obtained directly from the ionic liquids, in particular from methyltrioctylammonium chloride (MTOACDs) have demonstrated to be the best candidate as additive in different base oils (0.1%, w/v) and lubrication regimes, reducing the coefficient of friction about 30% and wear scar in more than 60% in the most extreme of the tested conditions (120 N). Additionally, nanolubricants are metal-free and therefore, more eco-friendly than classic additives.
  1. Li Q, Zhang L, Li J, Lu C, TrAC - Trends Anal. Chem., 30(2), 401 (2011)
  2. Zhang Y, Wang G, Yang L, Wang F, Liu A, Coord. Chem. Rev., 370, 1 (2018)
  3. Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM, Biosens. Bioelectron., 113, 124 (2018)
  4. Tebaldi ML, Oda CMR, Monteiro LOF, Barros ALB, Santos CJ, Soares DCF, J. Magn. Magn. Mater., 461, 116 (2018)
  5. Kong L, Sun J, Bao Y, RSC Adv., 7(21), 12599 (2017)
  6. Espina-Casado J, Fernandez-Gonzalez A, Reguero-Huerga AJ, Rodriguez-Solla H, Diaz-Garcia ME, Badia-Laino R, Nanotechnology, 28(49), 495704 (2017)
  7. Elimelech M, Gregory J, Jia X, Williams RA, Butterworth-Heinemann, Chapters 3 (33-63 pp.) and 6 (15-200 pp.) 2013.
  8. Hunter RJ, Foundations of Colloid Science, 2nd ed., Oxford University Press, New York, 2001.
  9. Aghamali A, Khosravi M, Hamishehkar H, Modirshahla N, Behnajady NA, J. Luminesc., 201, 265 (2018)
  10. Lopez TDF, Fernandez-Gonzalez A, Diaz-Garcia ME, Badia-Laino R, Carbon, 94, 142 (2015)
  11. Zhou JJ, Sheng ZH, Han HY, Zou MQ, Li CX, Mater. Lett., 66(1), 222 (2012)
  12. Minami I, Molecules, 14(6), 2286 (2009)
  13. Bermudez MD, Jimenez AE, Sanes J, Carrion FJ, Molecules, 14(8), 2888 (2009)
  14. Zhou Y, Qu J, ACS Appl. Mater. Interfaces, 9, 3209 (2017)
  15. Amiril SAS, Rahim EA, Syahrullail S, J. Clean Prod., 168, 1571 (2017)
  16. Aviles MD, Saurin N, Sanes J, Carrion FJ, Bermudez MD, Lubricants, 5(2), 14 (2017)
  17. Battez AH, Ramos D, Blanco D, Gonzalez R,Fernandez-Gonzalez A, Viesca JL, Tribol. Lett., 66(19) (2018)
  18. Dennis SJE, Jin K, John VT, Pesika NS, ACS Appl. Mater. Interfaces, 3, 2215 (2011)
  19. Shang W, Cai T, Zhang Y, Liu D, Liu S, Tribol. Int., 118, 373 (2018)
  20. Tang J, Chen S, Jia Y, Ma Y, Xie H, Quan X, Ding Q, Carbon, 156, 272 (2020)
  21. Yu B, Liu Z, Ma C, Sun J, Liu W, Zhou F, Tribol. Int., 81, 38 (2015)
  22. Liu X, Huang Z, Tang W, Wang B, Nano, 12(9), 175010 (2017)
  23. Tang WW, Wang BG, Li JT, Li YZ, Zhang Y, Quan HP, Huang ZY, J. Mater. Sci., 54(2), 1171 (2019)
  24. Ma W, Gong Z, Gao K, Qiang L, Zhang J, Yu S, Mater. Lett., 195, 220 (2017)
  25. Molaei MJ, Talanta, 196, 456 (2019)
  26. Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM, J. Colloid Interface Sci., 328(2), 421 (2008)
  27. http://www.chemspider.com/Chemical-Structure.111188.html.
  28. Yamada T, Tominari Y, Tanaka S, Mizuno M, J. Phys. Chem. B, 121(14), 3121 (2017)
  29. Socrates G, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., Wiley, New York, 2004.
  30. Romero C, Baldelli S, J. Phys. Chem. B, 110(12), 6213 (2006)
  31. Wulf A, Fumino K, Ludwig R, J. Phys. Chem. A, 114, 685 (2010)
  32. Kong L, Lu K, Ling DX, Zhu P, Liu W, Guan H, Wang C, Chem. Select, 1, 4092 (2016)
  33. Strauss V, Margraf JT, Dolle C, Butz B, Nacken TJ, Walter J, Bauer W, Peukert W, Spiecker E, Clark T, Guldi DM, J. Am. Chem. Soc., 136(49), 17308 (2014)
  34. Bao L, Liu C, Zhang ZL, Pang DW, Adv. Mater., 27(10), 1663 (2015)
  35. Tang J, Zhang J, Zhang Y, Xiao Y, Shi Y, Chen Y, Ding L, Xu W, Nanoscale Res. Lett., 14, 241 (2019)
  36. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B, Nano Res., 8, 355 (2015)
  37. Baker SN, Baker GA, Angew. Chem.-Int. Edit., 49, 6726 (2010)
  38. Dimos K, Curr. Org. Chem., 14, 682 (2016)
  39. Osman DI, Attia SK, Taman AR, Egypt. J. Petrol., 27(2), 221 (2018)
  40. Viesca JL, Mallada MT, Blanco D, Fernandez-Gonzalez A, Espina-Casado J, Gonzalez R, Battez AH, Tribol. Int., 116, 422 (2017)
  41. Shang W, Ye M, Cai T, Zhao L, Zhang Y, Liu D, Liu S, J. Mol. Liq., 266, 65 (2018)
  42. Shang W, Cai T, Zhang Y, Liu D, Sun L, Su X, Liu S, Tribol. Int., 121, 302 (2018)
  43. Zhang Y, Cai T, Shang W, Liu D, Guo Q, Liu S, Dalton Trans., 46(36), 12306 (2017)
  44. Wang B, Tang W, Lu H, Huang Z, J. Mater. Chem. A, 4(19), 7257 (2016)