화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.87, 78-89, July, 2020
Converting crystalline thermosetting urea.formaldehyde resins to amorphous polymer using modified nanoclay
E-mail:
Thermosetting urea.formaldehyde (UF) resins as the most common adhesives for wood-based composites emit formaldehyde, which forces producers to lower formaldehyde/urea (F/U) molar ratio for the UF resins synthesis. However, low-molar-ratio (below 1.0) UF resins have low formaldehyde emission at the expense of poor adhesion, which is responsible for the formation of crystalline domains as a result of hydrogen bonds between linear molecules. For the first time, this study reports the conversion of crystalline UF resins to amorphous polymers by blocking the hydrogen bonds, using transition metal ion-modified bentonite (TMI-BNT) nanoclay through in situ intercalation. The modified UF resins with 5% TMI-BNT showed an almost amorphous structure, faster curing and higher crosslinking density compared with those of neat resins, and resulted in 56.4% increase in the adhesion strength and 48.3% reduction in the formaldehyde emission. Thus, blocking hydrogen bonds in low F/U molar ratio UF resins with TMI-BNT converted crystalline UF resins to almost amorphous ones, resulting in a significant improvement in their adhesion with a low crystallinity.
  1. Goldschmidt C, Berichte Der Dtsch. Chem. Gesellschaft, 29(3), 2438 (1896)
  2. John H, Manufacture of aldehyde condensation product capable of technical utilization, U.S. Patent 1,355,834, October 19, 1920.
  3. Park BD, Kang EC, Park JY, J. Appl, Polym. Sci., 101(3), 1787 (2006)
  4. Dunky M, Int. J. Adhes. Adhes., 18(2), 95 (1998)
  5. He Z, Zhang Y, Wei W, Build. Environ., 47(1), 197 (2012)
  6. Myers GE, ACS Symposium Series, pp.87 (1986).
  7. Tohmura SI, Hse CY, Higuchi M, J. Wood Sci., 46(4), 303 (2000)
  8. Mao A, Hassan EB, Kim MG, BioResources, 8(2), 2453 (2013)
  9. Myers G, For. Prod. J., 34(5), 34 (1984)
  10. Boran S, Usta M, Gumukaya E, Int. J. Adhes. Adhes., 31(7), 674 (2011)
  11. Kim MG, J. Appl. Polym. Sci., 80(14), 2800 (2001)
  12. Wang H, Cao M, Li T, Yang L, Duan Z, Zhou X, Du G, Polymers, 10(6), 602
  13. Levendis D, Pizzi A, Ferg E, Holzforschung, 46(3), 263 (1992)
  14. Liu M, Thirumalai RVKG, Wu Y, Wan H, RSC Adv., 7(78), 49536 (2017)
  15. Park B, Causin V, Eur. Polym. J., 49(2), 532 (2013)
  16. Singh AP, Causin V, Nuryawan A, Park BD, Eur. Polym. J., 56(1), 185 (2014)
  17. Dunker AK, John WE, Rammon R, Farmer B, Johns SJ, J. Adhes., 19(2), 153 (1986)
  18. Lei H, Du GB, Pizzi A, Celzard A, J. Appl. Polym. Sci., 109(4), 2442 (2008)
  19. Zhou X, Pizzi A, Du G, J. Adhes. Sci. Technol., 26(10-11), 1341 (2012)
  20. Prakalathan K, Mohanty S, Nayak SK, Thermoplast J, Compos. Mater., 27(12), 1631 (2014)
  21. Nawani P, Gelfer MY, Hsiao BS, Frenkel A, Gilman JW, Khalid S, Langmuir, 23(19), 9808 (2007)
  22. Park JH, Jana SC, Macromolecules, 36(8), 2758 (2003)
  23. Kong D, Park CE, Chem. Mater., 15(2), 419 (2003)
  24. Yadav SM, Yusoh KB, E-Polymers, 16(6), 447 (2016)
  25. Nuryawan A, Park BD, Singh AP, J. Therm. Anal. Calorim., 118(1), 397 (2014)
  26. Jeong B, Park BD, Wood Sci. Technol., 53(3), 665 (2019)
  27. Motawie AM, Madany MM, El-Dakrory AZ, Osman HM, Ismail EA, Badr MM, El-Komy DA, Abulyazied DE, Egypt. J. Pet., 23(3), 331 (2014)
  28. Alexandre M, Dubois P, Mater. Sci. Eng. R-Rep., 28(1-2), 1 (2000)
  29. Wibowo ES, Park B, Macromol. Res., 2 (2020).
  30. Li M, Dingemans TJ, Polymer, 108, 372 (2017)
  31. Rotaru R, Savin M, Tudorachi N, Peptu C, Samoila P, Sacarescu L, Harabagiu V, Polym. Chem., 9(7), 860 (2018)
  32. Singh AP, Nuryawan A, Park BD, Lee KH, Holzforschung, 69(3), 303 (2015)
  33. Park BD, Kim JW, J. Appl. Polym. Sci., 108(3), 2045 (2008)
  34. Ma S, Jiang Y, Liu X, Fan L, Zhu J, RSC Adv., 4(44), 23036 (2014)
  35. Hong J, Luo Q, Wan X, Petrovic ZS, Shah BK, Biomacromolecules 13, 13(1), 261 (2012)
  36. Korean Standard, KS F3101: Plywood, (2016).
  37. Zhang X, Lin F, Yuan Q, Zhu L, Wang C, Yang S, Carbohydr. Polym., 215, 58 (2019)
  38. Jada SS, J. Appl. Polym. Sci., 35(6), 1573 (1988)
  39. Myers GE, J. Appl. Polym. Sci., 26(3), 747 (1981)
  40. Yamauchi K, Kuroki S, Fujii K, Ando I, Chem. Phys. Lett., 324(5-6), 435 (2000)
  41. Taylor R, Pragnell RJ, McLaren JV, Snape CE, Talanta, 29(6), 489 (1982)
  42. Chiavarini M, Del Fanti N, Bigatto R, Angew D, Makromol. Chem., 46, 151 (1975)
  43. Vico LI, Chem. Geol., 198(3-4), 213 (2003)
  44. Sun QN, Hse CY, Shupe TF, J. Appl. Polym. Sci., 131, 1 (2014)
  45. Morlat S, Mailhot B, Gonzalez D, Gardette JL, Chem. Mater., 16(3), 377 (2004)
  46. Socrates G, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., John Wiley & Sons, 2004.
  47. Park BD, Kim YS, Singh AP, Lim KP, J. Appl. Polym. Sci., 88(11), 2677 (2003)
  48. Pershina KD, Khodykina MO, Kazdobin KA, Surf. Eng. Appl. Electrochem., 51(6), 572 (2016)
  49. Abdullah MA, Afzaal M, Ismail Z, Ahmad A, Nazir MS, Bhat AH, Desalin. Water Treat., 54(11), 3044 (2015)
  50. Drnovsek N, Kocen R, Gantar A, Drobnic-Kosorok M, Leonardi A, Krizaj I, Recnik A, Novak S, J. Mater. Chem. B, 4(40), 6597 (2016)
  51. Siimer K, Kaljuvee T, Christjanson P, J. Therm. Anal. Calorim., 72(2), 607 (2003)
  52. Sinha Ray S, Environ. Friendly Polym. Nanocompos., 415 (2013)
  53. Gao L, Zhang Q, Li H, Yu S, Zhong W, Sui G, Yang X, Polym. Chem., 8(13), 2016 (2017)
  54. Patil PN, Rath SK, Sharma SK, Sudarshan K, Maheshwari P, Patri M, Praveen S, Khandelwal P, Pujari PK, Soft Matter, 9(13), 3589 (2013)
  55. Wu Z, Xi X, Yu L, Su L, Wu Z, Xi X, Lei H, Du G, Yin Z, Wood Res., 63(1), 45 (2018)
  56. Mahrdt E, Pinkl S, Schmidberger C, van Herwijnen HWG, Veigel S, Gindl-Altmutter W, Cellulose, 23(1), 571 (2016)
  57. Park BD, Frihart CR, Yu Y, Singh AP, Eur. Polym. J., 49(10), 3089 (2013)
  58. Lubis MAR, Park BD, J. Adhes. Sci. Technol., 32(24), 2667 (2018)
  59. Lubis MAR, Park BD, Holzforschung, 72(9), 759 (2018)