화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.6, 1066-1070, June, 2020
Investigation on the performance of SnS solar cells grown by sputtering and effusion cell evaporation
E-mail:
SnS is an earth-abundant, non-toxic, and low-cost absorber material for solar cell applications. In this work, the physical properties of SnS thin films and efficiency of SnS solar cells were investigated for different tin metal layer thicknesses of 300 nm (Sn-300), 500 nm (Sn-500), and 700 nm (Sn-700) deposited by DC sputtering followed by the sulfurization using effusion cell evaporation method. The XRD and Raman characterizations confirmed the formation of single-phase SnS compound with orthorhombic structure for the case of Sn-500. The sulfurized films of Sn-500 had remarkable and homogeneous morphology with the optical band gap energy of 1.35 eV. The fabricated device showed an efficiency of 0.74% with an open-circuit voltage of 267mV, short circuit current density of 8.47 mA/cm2, and fill factor of 54.16. By varying the different metal tin layer thicknesses, this is the first report with device efficiency for SnS solar cells grown via effusion cell evaporation technique.
  1. Reddy VRM, Gedi S, Park C, Miles RW, Reddy KTR, Curr. Appl. Phys., 15(5), 588 (2015)
  2. Gedi S, Reddy VRM, Park C, Wook JC, Reddy KTR, Opt. Mater., 42, 468 (2015)
  3. Sinsermsuksakul P, Heo J, Noh W, Hock AS, Gordon RG, Adv. Eng. Mater., 1, 1116 (2011)
  4. Ham G, Shin S, Park J, Choi H, Kim J, Lee YA, Seo H, Jeon H, ACS Appl. Mater. Interfaces, 5, 8889 (2013)
  5. Schneikart A, Schimper HJ, Klein A, Jaegermann W, J. Phys. Appl. Phys., 46, 305109 (2013)
  6. Kubiak RA, Driscoll P, Parker EHC, J. Vac. Sci. Technol., 20, 252 (1982)
  7. Tiedje HF, Brodie DE, Rev. Sci. Instrum., 71, 2121 (2000)
  8. Chakraborty R, Steinmann V, Mangan NM, Brandt RE, et al., Appl. Phys. Lett., 106, 203901 (2015)
  9. Minemura T, Miyauchi K, Noguchi K, Ohtsuka K, Nakanishi H, Sugiyama M, Phys. Status Solidi C, 6, 1221 (2009)
  10. Yago A, Kibishi T, Akaki Y, Nakamura S, Oomae H, Katagiri H, Araki H, Jpn. J. Appl. Phys., 57, 02CE08 (2018)
  11. Revathi N, Bereznev S, Loorits M, Raudoja J, Lehner J, Gurevits J, Traksmaa R, Mikli V, Mellikov E, Volobujeva O, J. Vac. Sci. Technol. Vac. Surf. Films, 32, 061506 (2014)
  12. Mikami S, Yokoi T, Sumi H, Aihara S, Khatri I, Sugiyama M, Phys. Status Solidi C, 14, 160016 (2017)
  13. Caballero R, Conde V, Leon M, Thin Solid Films, 612, 202 (2016)
  14. Jiang T, Ozin GA, J. Mater. Chem., 8, 1099 (1998)
  15. Kim J, Kim J, Yoon S, Kang J, Jeon CW, Jo W, J. Phys. Chem. C, 122, 3523 (2018)
  16. Robles V, Trigo JF, Guillen C, Herrero J, Thin Solid Films, 582, 249 (2015)
  17. Chandrasekhar HR, Mead DG, Phys. Rev. B, 19, 932 (1979)
  18. Price LS, Parkin IP, Hardy AME, Clark RJH, Hibbert TG, Molloy KC, Chem. Mater., 11, 1792 (1999)
  19. Chao J, Xie Z, Duan X, Dong Y, Wang Z, Xu J, Liang B, Shan B, Ye J, Chen D, Shen G, CrystEngComm, 14, 3163 (2012)
  20. Chandrasekhar HR, Humphreys RG, Zwick U, Cardona M, Phys. Rev. B, 15, 2177 (1977)
  21. Di Mare S, Menossi D, Salavei A, Artegiani E, Piccinelli F, Kumar A, Mariotto G, Romeo A, Coatings, 7, 34 (2017)
  22. Nwofe PA, Reddy KTR, Tan JK, Forbes I, Miles RW, J. Phys. Conf. Ser., 417, 012039 (2013)
  23. Pramanik P, Basu PK, Biswas S, Thin Solid Films, 150, 269 (1987)
  24. Banai RE, Burton LA, Choi SG, Hofherr F, Sorgenfrei T, Walsh A, To B, Croll A, Brownson JRS, J. Appl. Phys., 116, 013511 (2014)
  25. Li H, Cheng S, Zhang J, Huang W, Zhou H, Jia H, World J. Condens. Matter Phys., 5, 10 (2015)
  26. Arvizu JAA, Piedrahita MC, Glalan OV, J. Mater. Sci. Mater. Electron., 26, 4541 (2015)
  27. Steinmann V, Jaramillo R, Hartman K, Chakraborty R, Brandt RE, Poindexter JR, Lee YS, Sun LZ, Polizzotti A, Park HH, Gordon RG, Buonassisi T, Adv. Mater., 26(44), 7488 (2014)