화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.5, 523-529, May, 2020
Enhanced Shear Thickening of Silica Colloidal Suspension Using Polystyrene-Polyacrylamide Particles
E-mail:,
Shear thickening (ST) refers to a non-Newtonian behavior of concentrated colloidal suspensions, which exhibits significant viscosity increments at high shear stress or high shear rate. A shear thickening fluid (STF) consists of well-dispersed solid particles in a liquid medium. Silica particles are often used as components of STFs due to the abundance of hydroxyl groups on their surfaces. Polystyrene core-polyacrylamide shell particles (PS-PAAm particles) were prepared to enhance the ST of silica particle-based colloidal suspensions. Addition of PS-PAAm particles to various particle weight fractions of silica particle-based STFs resulted in amplification of ST in all instances. These results suggest that PS-PAAm particles enhance inter-particle interactions due to the abundance of hydrogen-bonding donor groups in polyacrylamide.
  1. Hoffman RL, T. Soc. Rheol., 16, 155 (1972)
  2. Hoffman RL, J. Colloid Interface Sci., 46, 491 (1974)
  3. Barnes H, J. Rheol., 33, 329 (1989)
  4. Bender J, Wagner NJ, J. Rheol., 40(5), 899 (1996)
  5. Lee YS, Wetzel ED, Wagner NJ, J. Mater. Sci., 38(13), 2825 (2003)
  6. Kang TJ, Kim CY, Hong KH, J. Appl. Polym. Sci., 124(2), 1534 (2012)
  7. Srivastava A, Majumdar A, Butola BS, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 529, 224 (2011)
  8. Fischer C, Braun S, Bourban P, Michaud V, Plummer C, Manson JE, Smart Mater. Struct., 15, 1467 (2006)
  9. Zhang X, Li W, Gong X, Smart Mater. Struct., 17, 035027 (2008)
  10. Hoffman RL, Adv. Colloid Interface Sci., 17, 161 (1982)
  11. Laun H, Bung R, Hess S, Loose W, Hess O, Hahn K, Hadicke E, Hingmann R, Schmidt F, Lindner P, J. Rheol., 36, 743 (1992)
  12. Wagner NJ, Brady JF, Phys. Today, 62, 27 (2009)
  13. Brady JF, Bossis G, J. Fluid Mech., 155, 105 (1985)
  14. Kishbaugh A, McHugh A, Rheol. Acta, 32, 9 (1993)
  15. Kishbaugh A, McHugh A, Rheol. Acta, 32, 115 (1993)
  16. O'Brien VT, Mackay ME, Langmuir, 16(21), 7931 (2000)
  17. Maranzano BJ, Wagner NJ, J. Chem. Phys., 117(22), 10291 (2002)
  18. Lee YS, Wagner NJ, Ind. Eng. Chem. Res., 45(21), 7015 (2006)
  19. Cheng X, McCoy JH, Israelachvili JN, Cohen I, Science, 333(6047), 1276 (2011)
  20. Srivastava A, Majumdar A, Butola B, Crit. Rev. Solid State Mater. Sci, 37, 115 (2012)
  21. Lee BW, Kim IJ, Kim CG, J. Compos. Mater., 43, 2679 (2009)
  22. Olhero S, Ferreira J, Power Technol., 139, 69 (2004)
  23. Kang PS, Lim JS, Huh C, J. Ind. Eng. Chem., 78, 257 (2019)
  24. Yang HB, Shao S,Zhu T, Chen C, Liu S, Zhou B, Hou X, Zhang Y, Kang W, J. Ind. Eng. Chem., 79, 295 (2019)
  25. Par IH, Choi HJ, J. Ind. Eng. Chem., 64, 102 (2018)
  26. Park SJ, Choi SH, Song JK, Park EU, Rho TH, Polym. Korea, 43(5), 700 (2019)
  27. Li S, Wang J, Zhao S, Cai W, Wang Z, Wang S, J. Mater. Res. Technol., 33, 261 (2017)
  28. Zheng SB, Xuan SH, Jiang WQ, Gong XL, Smart Mater. Struct., 24, 085033 (2015)
  29. Sha X, Yu K, Cao H, Qian K, J. Nanopart. Res., 15, 1816 (2013)
  30. Liu M, Jiang W, Chen Q, Wang S, Mao Y, Gong X, Leung KF, Tian J, Wang H, Xuan S, RSC Adv., 6, 29279 (2016)
  31. Chen Q, Liu M, Xuan S, Jiang W, Cao S, Gong X, Mater. Des., 121, 92 (2017)
  32. Li S, Wang Y, Ding J, Wu H, Fu Y, Text. Res. J., 84, 897 (2014)
  33. Son HS, Kim KH, Song JH, Lee W, Kim JH, Yoon KH, Lee YS, Paik HJ, Colloid Polym. Sci., 297, 95 (2019)
  34. Son HS, Kim KH, Kim JH, Yoon KH, Lee YS, Paik HJ, Colloid Polym. Sci., 296, 1591 (2018)
  35. Dobrowolska ME, van Esch JH, Koper GJ, Langmuir, 29, 11724 (2013)
  36. Brown E, Forman NA, Orellana CS, Zhang HJ, Maynor BW, Betts DE, DeSimone JM, Jaeger HM, Nat. Mater., 9(3), 220 (2010)