화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.3, 408-414, May, 2020
고분자 태양전지용 DPP와 Furan 기반 단분자 어셉터의 CN 치환기 효과
Influence of CN Substitution on DPP-furan-based Small-molecule Acceptors for Polymer Solar Cells
E-mail:
초록
본 연구에서는, 스즈키 짝지음 반응을 이용하여 p- 및 o-DPP-F-PhCN의 두 단분자를 합성하여 고분자 태양전지의 비풀러렌계 어셉터로 사용하였다. 치환기의 위치 및 퓨란 효과에 따른 단분자의 물리적 특성 변화를 살펴보았다. 퓨란 그룹의 도입으로 단분자는 더 높은 상전이 온도와 HOMO 및 LUMO 준위를 나타내었다. o-치환 역시 분자의 에너지 준위를 높게 함으로써, o-DPP-F-PhCN의 에너지 준위가 가장 높게 나타났다. 상대적으로 강하고 장파장 이동된 UV-vis 흡수는 o-DPP-F-PhCN의 강한 분자 응집을 나타낸다. P3HT와 DPP-F-PhCN들을 각각 고분자 도너와 비풀러렌계 어셉터로 사용한 고분자 태양전지를 제작하였고, 두 DPP-F-PhCN이 유사한 효율을 나타내었다. o-DPP-F-PhCN의 강한 응집 거동은 외부양자효율에 유리하였으나, 향상된 오비탈 상호작용에 따른 안정화된 LUMO 준위로 인해 상대적으로 낮은 개방전압 값을 나타내었다.
In this study, two small-molecules, p- and o-DPP-F-PhCN, were synthesized via a Suzuki coupling reaction and used as nonfullerene acceptors (NFAs) for poly(3-hexylthiophene) (P3HT)-based polymer solar cells (PSCs). The physical properties of the molecules were examined in terms of the substituent position and the effect of the furan moiety. The introduction of a furan moiety resulted in higher phase-transition temperatures and higher-lying molecular orbital energy levels of the molecules. Substitution at the ortho position also elevated the energy levels of the molecules, resulting in the highest-lying values for o-DPP-F-PhCN. A relatively enhanced and red-shifted UV?vis absorption of o-DPP-F-PhCN indicated its stronger molecular aggregation. PSCs based on two DPP-F-PhCNs exhibited similar device efficiencies. The stronger aggregation behavior of o-DPP-F-PhCN led to a device with a better external quantum efficiency profile; however, the enhanced orbital interactions and resulting stabilized the lowest unoccupied molecular orbital level of o-DPP-F-PhCN led to a relatively low open-circuit voltage.
  1. Maduwu RD, Jin HC, Kim JH, Macromol. Res., 27(12), 1261 (2019)
  2. Hoang MH, Park GE, Phan DL, Ngo TT, Nguyen TV, Park CG, Cho MJ, Choi DH, Macromol. Res., 26(9), 844 (2018)
  3. Meng LX, Zhang YM, Wan XJ, Li CX, Zhang X, Wang YB, Ke X, Xiao Z, Ding LM, Xia RX, Yip HL, Cao Y, Chen YS, Science, 361(6407), 1094 (2018)
  4. Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J, Nat. Sci. Rev., nwz200 (2019).
  5. Pang S, Zhou X, Zhang S, Tang H, Dhakal S, Gu X, Duan C, Huang F, Cao Y, ACS Appl. Mater. Interf., 12, 16531 (2002)
  6. Lee T, Eom Y, Song CE, Jung IH, Kim D, Lee SK, Shin WS, Lim E, Adv. Eng. Mater., 9, 180402 (2019)
  7. Li X, Wang Y, Zhu Q, Guo X, Ma W, Ou X, Zhang M, Li Y, J. Mater. Chem. A, 7, 3682 (2019)
  8. Yu ZP, Liu ZX, Chen FX, Qin R, Lau TK, Yin JL, Kong X, Lu X, Shi M, Li CZ, Chen H, Nat. Commun., 10, 2152 (2019)
  9. Liu T, Pan X, Meng X, Liu Y, Wei D, Ma W, Huo L, Sun X, Lee TH, Huang M, Choi Kim JY, Choy WCH, Sun Y, Adv. Mater., 29, 160425 (2017)
  10. Gevaerts VS, Herzig EM, Kirkus M, Hendriks KH, Wienk MM, Perlich J, Muller-Buschbaum P, Janssen RAJ, Chem. Mater., 26, 916 (2013)
  11. Lim E, Lee S, Lee KK, Kang IN, Moon SJ, Kong HY, Katz HE, Sol. Energy Mater. Sol. Cells, 107, 165 (2012)
  12. Kim Y, Song CE, Ko EJ, Kim D, Moon SJ, Lim E, RSC Adv., 5, 4811 (2015)
  13. Woo CH, Beaujuge PM, Holcombe TW, Lee OP, Frechet JMJ, J. Am. Chem. Soc., 132(44), 15547 (2010)
  14. Sonar P, Singh SP, Williams EL, Li Y, Soh MS, Dodabalapur A, J. Mater. Chem., 22, 4425 (2012)
  15. Burckstummer H, Weissenstein A, Bialas D, Wurthner F, J. Org. Chem., 76, 2426 (2011)
  16. Eom Y, Lim E, Polym. Korea, 39(6), 986 (2015)
  17. Liu D, Kan B, Ke X, Zheng N, Xie Z, Lu D, Liu Y, Adv. Eng. Mater., 8, 180161 (2018)
  18. Zhang M, Xiao Z, Gao W, Liu Q, Jin K, Wang W, Mi Y, An Q, Ma X, Liu X, Yang C, Ding L, Zhang F, Adv. Eng. Mater., 8, 180196 (2018)
  19. Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CL, Adv. Mater., 18(6), 789 (2006)