화학공학소재연구정보센터
Solar Energy, Vol.196, 389-398, 2020
A shallow cross-flow fluidized-bed solar reactor for continuous calcination processes
A laboratory-scale solar reactor prototype dedicated to calcination processes of non-metallic mineral particles is tested and characterized. The prototype consists of an indirect heating shallow cross-flow fluidized-bed reactorreceiver. It is composed of 4 compartments in series in which the particles are thermally treated with solar power in order to drive the endothermic calcination reaction. The particles are fluidized in the reactor with preheated air and are heated up to 800 degrees C through the front wall of the reactor receiving the concentrated solar flux (about 200 kW/m(2)). The tests are carried out at the 1-MW Odeillo's solar furnace (France). The thermal decomposition of a continuous stream of 9.4 kg/h of dolomite (CaMg(CO3)(2)) is investigated in this paper. The half decomposition of dolomite (CaMg(CO3)(2) -> CaCO3 + MgO + CO2) is performed with a degree of conversion of 100%. The complete decomposition of dolomite (CaMg(CO3)(2) -> CaO + MgO + 2CO(2)) is not reached because, with respect to the CO 2 partial pressure in the reactor, the temperature of particles is not high enough to decompose the calcium carbonate. The calculated thermochemical efficiency (i.e. the energy absorbed by the endothermic calcination reaction compared to the solar energy provided to the system) is 6.6%. This low efficiency is neither surprising nor critical since the reactor design was not optimised with respect to energy efficiency but designed to the control of particle flow and front wall solar flux distribution. A numerical model considering the 4 compartments of the reactor as 4 ideal continuous stirred tank reactors in series is developed. The model accounts for the mass and the energy balances, as well as the reaction kinetics of the half decomposition of dolomite. The model gives consistent results compared to the experimental data. These results are a proof of concept of continuous calcination reaction using concentrated solar energy in a cross-flow fluidized-bed reactor.