화학공학소재연구정보센터
Nature Materials, Vol.19, No.4, 397-+, 2020
Multi-messenger nanoprobes of hidden magnetism in a strained manganite
The ground-state properties of correlated electron systems can be extraordinarily sensitive to external stimuli, offering abundant platforms for functional materials. Using the multi-messenger combination of atomic force microscopy, cryogenic scanning near-field optical microscopy, magnetic force microscopy and ultrafast laser excitation, we demonstrate both 'writing' and 'erasing' of a metastable ferromagnetic metal phase in strained films of La2/3Ca1/3MnO3 (LCMO) with nanometre-resolved finesse. By tracking both optical conductivity and magnetism at the nanoscale, we reveal how strain-coupling underlies the dynamic growth, spontaneous nanotexture and first-order melting transition of this hidden photoinduced metal. Our first-principles calculations reveal that epitaxially engineered Jahn-Teller distortion can stabilize nearly degenerate antiferromagnetic insulator and ferromagnetic metal phases. We propose a Ginzburg-Landau description to rationalize the co-active interplay of strain, lattice distortions and magnetism nano-resolved here in strained LCMO, thus guiding future functional engineering of epitaxial oxides into the regime of phase-programmable materials. A multi-messenger combination of atomic force microscopy, scanning near-field optical microscopy and magnetic force microscopy demonstrates a strain-modulated photoinduced ferromagnetic metallic state in La2/3Ca1/3MnO3.