화학공학소재연구정보센터
Langmuir, Vol.36, No.5, 1338-1344, 2020
Simplified Prediction of Ion Removal in Capacitive Deionization of Multi-Ion Solutions
Capacitive deionization (CDI) is an upcoming desalination technology being increasingly considered to be a simple and cost-effective solution for brackish water, where electrosorption leads to the removal of charged species from water. Real-world water samples typically contain a multitude of ions that must be considered apart from sodium-chloride salt. In this work, we have developed a method to quantify the competitive adsorption of different ionic species during CDI processes. The method is straightforward, requiring a single calibrating experiment to extract a 'periodic table' of competitiveness scores for all ions present in the experiment. Using a dynamic Langmuir model that was developed by our group, it is shown that these scores could subsequently be used to predict the adsorption of any ion species in a multi-ion solution. Excellent agreement with data from the literature could be achieved with this model, and the method is especially well-suited for trace ions as these can be predicted directly. The derived method is simple and accurate for quantifying and predicting adsorption in multi-ion solutions and could be valuable for predicting the effect when applying CDI to real-world water samples.