화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.142, No.8, 3797-3805, 2020
Tethered Counterion-Directed Catalysis: Merging the Chiral Ion-Pairing and Bifunctional Ligand Strategies in Enantioselective Gold(I) Catalysis
Tethering a metal complex to its phosphate counter-ion via a phosphine ligand enables a new strategy in asymmetric counteranion-directed catalysis (ACDC). A straightforward, scalable synthetic route gives access to the gold(I) complex of a phosphine displaying a chiral phosphoric acid function. The complex generates a catalytically active species with an unprecedented intramolecular relationship between the cationic Au(I) center and the phosphate counterion. The benefits of tethering the two functions of the catalyst are demonstrated here in a tandem cycloisomerization/nucleophilic addition reaction, by attaining high enantioselectivity levels (up to 97% ee) at an unusually low 0.2 mol % catalyst loading. Remarkably, the method is also compatible with a silver-free protocol.