화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.566, 69-78, 2020
Efficient scald-preventing enabled by robust polyester fabrics with hot water repellency and water impalement resistance
Scald is a kind of common injury for human beings caused by contacting with hot liquids and/or vapor. Herein, we report the preparation of an advanced fabric for efficient scald-preventing by dip-coating a common polyester fabric in a hexadecyl polysiloxane (HD-POS) aqueous suspension, which was synthesized via a waterborne and nonfluorinated approach. Thanks to the hierarchical micro-/nanostructure of the fabric, stable bonding of the compact HD-POS layer on the polyester microfibers, and inherent high stability and elasticity of HD-POS, the fabric features excellent hot water repellency even for dynamic boiling water with a high water impalement resistance of up to 5 grades according to the water repellency grade test. In addition, the fabric shows extraordinary mechanical stability, e.g., its superhydrophobicity remained nearly unchanged after 200 cycles washing, 10,000 cycles Martindale abraison or 1000 cycles 100% streching and releasing. It also exhibits superior environmental robustness (117 d outdoor test) and chemical robustness (7 d immersion in 1 M HCI or NaOH solution, 60 min ultrosonication in both water and anchol immersion) in various harsh conditions. By applying as an advanced fabric for efficient scald-preventing, it can avoid direct contact of hot water and vapor with rat skin by preventing penetration of hot water and most of vapor. It could also significantly reduce heat conduction and radiation to rat skin by reducing contact time of hot water with the fabric (decreased 10 s more quickly than the pristine fabric to 60 degrees C when encountering 100 mL of 92 degrees C water). As a result, the fabric in contact with the skin keeps dry and the fabric temperature is much lower than that of the pristine fabric once encountering hot water, thus showing great potentials as an advanced fabric for efficient scald- preventing applications. (C) 2020 Elsevier Inc. All rights reserved.