화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.45, No.15, 8198-8222, 2020
Rational design and fabrication of surface tailored low dimensional Indium Gallium Nitride for photoelectrochemical water cleavage
Currently several type of energy sources exist in the modern world. The energy makes people's life more comfortable, easy, time savings, fast transformation of information and various modes of transmission. Because of large demand of energy, efforts on production of energy increases day by day which subsequently increase serious environmental concerns such as pollution and lack of existing natural resources. In this respect, several attempts have been proposed for new type of renewable and chemical energy systems to overcome the economic burden, global warming and environmental problems caused by the use of conventional fossil fuels. Hydrogen production via water splitting is a promising and ideal route for renewable energy using the most abundant resources of solar light and water. Cost effective photocatalyst for Photoelectrochemical (PEC) water splitting using semiconductor materials as light absorbers have been extensively studied due to their stability and simplicity. Over the past few decades, various metal oxide photocatalysts for water splitting have been developed and their photocatalytic application was studied under UV irradiation. Alternative semiconductor photocatalyst should harness solar energy in the visible light, one such semiconductor material is indium gallium nitride (InGaN), owing to its suitable and tunable energy band-gap, chemical resistance and notable photoelectrocatalytic activity. This review article is initiated with the brief introduction about the origin and methods of production of hydrogen gas from both renewable and nonrenewable energy sources. Multi-functional properties and applications of InGaN are described along with past and recent efforts of InGaN materials for hydrogen evolution by several investigators are provided in detail. In addition, future prospects and ways to improve the PEC performance of InGaN are presented at the end of this review. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.