Biochemical and Biophysical Research Communications, Vol.525, No.2, 477-482, 2020
The mechanism of action of Spi-B in the transcriptional activation of the interferon-alpha 4 gene
Plasmacytoid dendritic cells (pDCs) are characterized by an exclusive expression of nucleic acid sensing Toll-like receptor 7 (TLR7) and TLR9, and production of high amounts of type I interferon (IFN) in response to TLR7/9 signaling. This function is crucial for both antiviral immunity and the pathogenesis of autoimmune diseases. An Ets family transcription factor, i.e., Spi-B (which is highly expressed in pDCs) is required for TLR7/9 signal-induced type I IFN production and can transactivate IFN-alpha promoter in synergy with IFN regulatory factor-7 (IRF-7). Herein, we analyzed how Spi-B contributes to the transactivation of the Ifna4 promoter. We performed deletion and/or mutational analyses of the Ifna4 promoter and an electrophoretic mobility shift assay (EMSA) and observed an Spi-B binding site in close proximity to the IRF-7 binding site. The EMSA results also showed that the binding of Spi-B to the double-stranded DNA probe potentiated the recruitment of IRF-7 to its binding site. We also observed that the association of Spi-B with transcriptional coactivator p300 was required for the Spi-B-induced synergistic enhancement of the Ifna4 promoter activity by Spi-B. These results clarify the molecular mechanism of action of Spi-B in the transcriptional activation of the Ifna4 promoter. (C) 2020 Elsevier Inc. All rights reserved.