Korean Chemical Engineering Research, Vol.58, No.2, 248-256, April, 2020
기계학습 기반의 가스폭발위험범위 예측모델에 관한 연구
A Study on Predictive Models based on the Machine Learning for Evaluating the Extent of Hazardous Zone of Explosive Gases
E-mail:
초록
본 연구에서는 폭발위험장소의 방폭설비 설치를 위해 필요한 가스폭발위험범위 예측모델 개발을 수행하였다. 이를 위해 12개의 가연성가스에 대한 1,200개의 폭발위험범위 데이터를 생성하였다. 가스폭발위험범위를 출력변수로 설정 하였고 데이터 생성과정에서 필요한 12개의 변수를 입력변수로 설정하였다. 다중 회귀, 주성분 회귀, 인공신경망 기법을 이용해 예측모델을 개발하였다. 각각 모델의 예측 성능을 비교한 결과, 평균절대퍼센트오차(MAPE)는 각각 44.2%, 49.3%, 5.7%이고 평균제곱근오차(RMSE)는 1.389 m, 1.602 m, 0.203 m로 나타났다. 결과를 통해 인공신경망이 가장 우수한 성능을 보여주었고 가스폭발위험범위 예측을 위한 최적 모델이라는 것을 확인하였다.
In this study, predictive models based on machine learning for evaluating the extent of hazardous zone of explosive gases are developed. They are able to provide important guidelines for installing the explosion proof apparatus. 1,200 research data sets including 12 combustible gases and their extents of hazardous zone are generated to train predictive models. The extent of hazardous zone is set to an output variable and 12 variables affecting an output are set as input variables. Multiple linear regression, principal component regression, and artificial neural network are employed to train predictive models. Mean absolute percentage errors of multiple linear regression, principal component regression, and artificial neural network are 44.2%, 49.3%, and 5.7% and root mean square errors are 1.389m, 1.602m, and 0.203 m respectively. Therefore, it can be concluded that the artificial neural network shows the best performance. This model can be easily used to evaluate the extent of hazardous zone for explosive gases.
Keywords:Extent of hazardous zone of explosive gases;Multiple linear regression;Principal component regression;artificial neural network
- Lee HS, Yim JP, Journal of the Korean Society of Safety, 32(3), 21-27(2017).
- Lee KO, Park JY, Lee CJ, The Korean Institute of Chemical Engineers, 35(2), 348-354(2018).
- Crowl DA, Louvar JF, Chemical Safety Process : Fundamentals with applications, 3rd ed., Prentice Hall, USA(2011).
- Byun JH, Lee SJ, Jeong KH, Occupational Safety &Health Research Institute, Korea(2019).
- KS C IEC 60079-10-1 : Korean Industrial Standards, Korea(2017).
- Jung YJ, Lee CJ, Journal of the Korean Society of Safety, 33(3), 39-45 (2018).
- Choi JY, Korean Journal of Hazardous Materials, 6(1), 8-17(2018).
- Bozek A, Petroleum and Chemical Industry Technical Conference, September, Calgary, AB(2017).
- Souza AO, Luiz AM, Chinese Journal of Chemical Engineering, 27(1), 21-31(2019).
- Miranda JT, Camacho EM, Journal of Loss Prevention in the Process Industries, 26, 839-850(2013).
- Shrivastava V, Mohan G, Petroleum and Chemical Industry Technical Conference, September, Philadelphia(2016).
- Jung YJ, Lee CJ, Journal of the Korean Society of Safety, 33(4), 21-29(2018).
- Zohdirad H, Ebadi T, Givehchi S, Int. J. Hydrog. Energy, 41(26), 11491 (2016)
- Cho KW, Kang CG, Oh CH, Journal of the Korea Institute of Information and Communication Engineering, 23(1), 20-26(2019).
- Park JY, Lee CJ, Journal of the Korean Society of Safety, 29(4), 73-77(2014).
- Lee CJ, Song SO, Yoon ES, Korean Chemical Engineering Research, 42(5), 538-544(2004).
- Park JH, Shin SW, Kim SY, Journal of the Korean Society of Civil Engineers, 38(2), 183-191(2018).
- Korea Petrochemical Industry Association, Petrochemical Handbook, Seoul(2019).
- Ministry of Environment, Chemical Statistics Survey, Sejong(2014).
- http://www.kgs.or.kr/kgsmain/SearchAction.do?method=mat1List&windowId=0305000101.html.
- https://cameochemicals.noaa.gov/search/simple.html.
- Yang WS, Park HM. J. Korea Contents Association, 15(1), 475-481(2015).
- Lee TR, Koo JY, Park HJ, Lee KH, Choi DW, Data mining, Korea National Open University, Seoul(2004).
- Park JH, Shin SW, Kim SY, Journal of the Korean Society of Safety, 33(6), 42-49(2018).
- Oh CS, Artificial Neural Networks for Deep Learnig, Naeha Inc., Korea(2016).
- Kwon SH, Lee JW, Chung GH, Journal of the Korean Society of Hazard Mitigation, 17(2), 315-325(2017).
- Kaiser HF, Psychometrika, 39(1), 31 (1974)
- Kaiser HF, Educational and Psychological Measurement, 20, 141-151(1960).
- Jolliffe IT, Journal of the Royal Statistical Society Series C, Royal Statistical Society, 21(2), 160-173(1972).
- Catell RR, Multivariate Behavioral Research, 1, 245-276(1966).
- Hornik K, Neural Networks, 2, 359 (1989)
- Cybenko G, Mathmatics of Control, Signals and Systems, 2, 303-314(1989).
- Stephen M, Machine Learning:An Algorithmic Perspective, 2nded., Jpub Inc., Korea(2018).
- Bengio Y, Neural Networks:Tricks of the Trade 2nd ed., 437-478, Springer, Heidelberg(2012).
- Berry MJA, Linoff G, Data mining technique, Wiley, New York(1997).
- Oh IS, Machine Learning, Hanbit Academy Inc., Seoul(2017).