화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.4, 351-355, April, 2020
Outstanding Degradation Resistance of Hyaluronic Acid Achieved by Flavonoid Conjugations: Rheological Behavior
E-mail:
The functional conjugations with natural polyphenols could be a working strategy for accomplishing the degradation resistance of hyaluronic acids (HA). Herein, a series of HA conjugates with four different polyphenols with wide ranges in the degree of substitution were systematically prepared. The degradation rate could be retarded in a wide range without crosslinking: The conjugates having polyphenolic aglycone (catechin or quercetin) maintained their structures, as identified by viscosity, for up to 7 weeks in the presence of hyaluronidase. This retardation was outstanding compared to those reported from previous studies, and the physical mixtures of HA and polyphenols still showed significantly more retarded degradation than pristine HA. The degradation resistance could be controlled by varying the feed ratio of polyphenols. This conjugation method of polyphenols could open up new application areas of HA with the outstanding degradation resistance.
  1. Williamson G, Kay CD, Crozier A, Compr. Rev. Food Sci. F, 17, 1054 (2018)
  2. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC, Sci. Rep., 6, 24049 (2016)
  3. Carmona-Gutierrez D, Zimmermann, Kainz K, Pietrocola F, Chen G, Maglioni S, Schiavi A, Nah J, Mertel S, Beuschel CB, Nat. Commun., 10, 651 (2019)
  4. Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z, Biochem. J., 374, 157 (2003)
  5. Winter KD, Dewitte G, Dirks-Hofmeister ME, Laet SD, Pelantova H, Kren V, Desmet T, J. Agri. Food Chem., 63, 10131 (2015)
  6. Shin M, Lee H, Chem. Mater., 29, 8211 (2017)
  7. Halake K, Birajdar M, Lee J, J. Ind. Eng. Chem., 35, 1 (2016)
  8. Waite JH, Tanzer ML, Science, 212, 1038 (2018)
  9. Jiang W, Hu M, RSC Adv., 2, 7948 (2012)
  10. Ihara N, Schmitz S, Kurisawa M, Chung JE, Uyama H, Kobayashi S, Biomacromolecules, 5(5), 1633 (2004)
  11. Schante CE, Zuber G, Herlin C, Vandamme TF, Carbohydr. Polym., 85, 469 (2011)
  12. Picotti F, Chung C, Jia X, Randolph MA, Langer R, Carbohydr. Polym., 93, 273 (2013)
  13. Burdick JA, Chung C, Jia XQ, Randolph MA, Langer R, Biomacromolecules, 6(1), 386 (2005)
  14. Halake K, Lee JH, J. Ind. Eng. Chem., 54, 44 (2017)
  15. Ahn S, Halake K, Lee J, Int. J. Biol. Macromol., 101, 776 (2017)
  16. Lee JH, Kim GH, J. Food Sci., 75, H212 (2010)
  17. Zhong SP, Campoccia D, Doherty PJ, Williams RL, Bendetti L, Williams DF, Biomaterials, 15, 359 (1994)
  18. Lee F, Chung JE, Xu K, Kurisawa M, ACS Macro Lett., 4, 957 (2015)
  19. Simulescu V, Kalina M, Mondek J, Pekar M, Carbohydr. Polym., 137, 664 (2016)
  20. Gwon K, Kim E, Tae G, Acta Biomater., 49, 284 (2017)
  21. Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH, Nat. Mater., 13(10), 988 (2014)
  22. Yang X, Singh A, Choy E, Hornicek FJ, Amiji MM, Duan Z, Sci. Rep., 5, 8509 (2015)
  23. Ge J, Cai R, Yang L, Zhang L, Jiang Y, Yang Y, Cui C, Wan S, Chu X, Tan W, ACS Sustain. Chem. Eng., 6, 1655 (2018)
  24. Mitragotri S, Burke PA, Langer R, Nat. Rev. Drug Discov., 13, 655 (2014)
  25. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA, Nat. Mater., 12(5), 458 (2013)
  26. Palmieri G, Rinaldi A, Cmpagnolo L, Tortora M, Caso MF, Mattei M, Notargiacomo A, Rosato N, Bottini M, Cavalieri F, Part. Part. Syst. Charact., 34, 160041 (2017)
  27. Chao KL, Muthukumar L, Herzberg O, Biochemistry, 46, 6911 (2007)
  28. Aviv M, Halperin-Sternfeld M, Grigoriants I, Buzhansky L, MironiHarpaz I, Seliktar D, Einav S, Nevo Z, Adler-Abramovich L, ACS Appl. Mater. Interfaces, 10, 41883 (2018)
  29. Papadopoulou A, Frazier RA, Trends Food Sci. Technol., 15, 186 (2004)
  30. Sousa AML, Li TD, Varghese S, Halling PJ, Lau KHA, ACS Appl. Mater. Interfaces, 10, 39353 (2018)