Journal of Industrial and Engineering Chemistry, Vol.85, 289-296, May, 2020
Nitrogen self-doped carbon sheets anchored hematite nanodots as efficient Li-ion storage anodes through pseudocapacitance mediated redox process
E-mail:,
The evolution of ultrathin carbon layers self-doped by nitrogen assists the formation of α-Fe2O3 nanodots embedded in N-rich carbon sheets by a surfactant-less self-assembly approach and they are reported as anode materials for lithium-ion batteries. The resulting Fe2O3 nanodots confine to size of 3.7 nm with evenly embedding in a two-dimensional N-rich carbon sheets. As an anode material, the Fe2O3ND/NC electrode delivers a reversible capacity of 917 mA h g-1 at 0.1 C rate after 100 cycles and a good rate capability and long term cyclability of 476 mA h g-1 at 3 C rate after 325 cycles. Detailed investigation through the differential capacity (dQ/dV) and galvanostatic charge/discharge techniques reveal and distinguish the dual role of charge storage, i.e., faradaic and pseudocapacitive processes are involved in realizing improved electrochemical performances. The contribution of the pseudocapacitive capacity from the electrochemical processes accounts for 216 mA h g-1, which are due to the Li storages in both the tiny size Fe2O3 and the defective sites of N-doped carbon sheets as portrayed through a model schematic. Altogether, the report paves way for accomplishing multiple avenues, such as in-situ nitrogen doping, preparation of nanodots and ultrathin N-doped carbon sheets for applications in energy conversion and storage devices.
- Goodenough JB, Energy Environ. Sci., 7, 14 (2014)
- Wang ZY, Zhou L, Lou XW, Adv. Mater., 24(14), 1903 (2012)
- Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
- Mahamood N, Yang T, Hou Y, Adv. Energy Mater., 17, 160037 (2015)
- Reddy MV, Rao GVS, Chowdari BVR, Chem. Rev., 113(7), 5364 (2013)
- Roy P, Srivastava SK, J. Mater. Chem. A, 3, 2454 (2015)
- Yan YZ, Tang HL, Wu F, Xie ZZ, Xu SJ, Qu DY, Wang R, Wu FL, Pan M, Qu DY, Electrochim. Acta, 253, 104 (2017)
- Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM, Nano Energy, 1, 107 (2012)
- Cho JS, Hong YJ, Kang YC, ACS Nano, 9, 4026 (2015)
- Lin YM, Abel PR, Heller A, Mullins CB, J. Phys. Chem. Lett., 2, 2885 (2011)
- Ji LW, Lin Z, Alcoutlabi M, Zhang XW, Energy Environ. Sci., 4, 2682 (2011)
- Qi W, Shapter JG, Wu Q, Yin T, Gao G, Cui D, J. Mater. Chem. A, 5, 19521 (2017)
- Lv XX, Deng JJ, Wang J, Zhong J, Sun XH, J. Mater. Chem. A, 3, 5183 (2015)
- Zhao R, Shen X, Wu Q, Zhang X, Li W, Gao G, Zhu L, Ni L, Diao G, Chen M, ACS Appl. Mater. Interfaces, 9, 24662 (2017)
- Cho JS, Park JS, Kang YC, Sci. Rep., 6, 38933 (2016)
- Gu C, Song X, Zhang S, Ryu SO, Huang J, J. Alloy. Compd., 714, 6 (2017)
- Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y, ACS Nano, 11, 5140 (2017)
- Yu SH, Conte DE, Baek S, Lee D, Park SK, Lee J, Piao Y, Sung Y, Pinna N, Adv. Funct. Mater., 23, 4293 (2013)
- Liu L, Yang X, Lv C, Zhu A, Zhu X, Guo S, Chen C, Yang D, ACS Appl. Mater. Interfaces, 8, 7047 (2016)
- Meng XF, Xu YL, Sun XF, Xiong LL, Wang QW, J. Power Sources, 326, 389 (2016)
- Ilango PR, Prasanna K, Subburaj T, Jo YN, Lee CW, Acta Mater., 100, 11 (2015)
- Jeong JM, Choi BG, Lee SC, Lee KG, Chang SJ, Han YK, Lee YB, Lee HU, Kwon S, Lee G, Lee CS, Huh YS, Adv. Mater., 25(43), 6250 (2013)
- Liu J, Nat. Nanotechnol., 9(10), 739 (2014)
- Senthil C, Kesavan T, Bhaumik A, Sasidharan M, Mater. Res. Express, 5, 016307 (2018)
- Yu Q, Xu Q, Li H, Yang K, Li X, J. Mater Sci., 54, 14599 (2019)
- Shin WH, Jeong HM, Kim BG, Kang JK, Choi JW, Nano Lett., 12, 2283 (2012)
- Mu TS, Zuo PJ, Lou SF, Pan QR, Li Q, Du CY, Gao YZ, Cheng XQ, Ma YL, Yin GP, Chem. Eng. J., 341, 37 (2018)
- Chen HY, Qiu LG, Xiao JD, Ye S, Jiang X, Yuan YP, RSC Adv., 4, 22491 (2014)
- Zhu H, Chen D, Yue D, Wang Z, Ding H, J. Nanopart. Res., 16, 2632 (2014)
- Senthil C, Kesavan T, Bhaumik A, Yoshio M, Sasidharan M, Electrochim. Acta, 255, 417 (2017)
- Shi M, Wu T, Song X, Liu J, Zhao L, Zhang P, Gao L, J. Mater. Chem. A, 4, 10666 (2016)
- Eda G, Chhowalla M, Adv. Mater., 22(22), 2392 (2010)
- Yamashita T, Hayes P, App. Surf. Sci., 254, 2441 (2008)
- Qu J, Yin YX, Wang YQ, Yan Y, Guo YG, Song WG, ACS Appl. Mater. Interfaces, 5, 3932 (2013)
- Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang ZX, Nano Energy, 7, 86 (2014)
- Senthil C, Kishore SC, Sasidharan M, Appl. Surf. Sci., 410, 215 (2017)
- Mi H, Li Y, Zhu P, Chai X, Sun L, Zhuo H, Zhang Q, He C, Liu J, J. Mater. Chem. A, 2, 11254 (2014)
- Dahn JR, Zheng T, Liu YH, Xue JS, Science, 270(5236), 590 (1995)
- Zhang D, Cui S, Yang J, J. Alloy. Compd., 708, 1141 (2017)
- Verrelli R, Brescia R, Scarpellini A, Manna L, Scrosati B, Hassoun J, RSC Adv., 4, 61855 (2014)
- Banerjee A, Aravindan V, Bhatnagar S, Mhamane D, Madhavi S, Ogale S, Nano Energy, 2, 890 (2013)
- Zhu XJ, Zhu YW, Murali S, Stollers MD, Ruoff RS, ACS Nano, 5, 3333 (2011)
- Conway BE, Scientific Fundamentals and Technological Applications (Chapter 16), p. 479, Plenum Pub. Corp., New York, 1999.
- Xiang Y, Yang Z, Wang S, Hossain MSA, Yu J, Ashok Kumar N, Yamauchi Y, Nanoscale, 10, 18010 (2018)
- Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon JM, J. Electrochem. Soc., 149, A627 (2012)
- Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G, J. Mater. Chem., 21, 5430 (2011)
- Feng F, Zhao S, Liu R, Yang Z, Shen Q, Electrochim. Acta, 222, 1160 (2016)
- Bard AJ, Faulkner LR, Fundamentals and Applications, Second ed., Wiley, New York, 2001.