화학공학소재연구정보센터
Clean Technology, Vol.26, No.1, 72-78, March, 2020
플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산
Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion
E-mail:
초록
화석연료의 사용과 바이오가스 생산 과정에서 공기오염과 기후변화문제가 발생된다. 기후변화 주요 원인물질인 이산화탄소와 메탄을 양질의 에너지원으로 전환하는데 연구가 지속되고 있다. 본 연구에서는 바이오가스를 양질의 에너지로 전환하고 태양광과 풍력과 같은 연속생산의 문제가 있는 재생에너지와 연계된 태양연료를 생산하기 위해 플라즈마-탄화물 전환 장치를 제안하였다. 그리고 이에 대한 가능성을 제시하기 위해 바이오가스 전환에 영향을 미치는 O2/C비, 전체가스공급량, CO2/CH4공급비의 변화에 따른 전환 및 생성가스 특성 파악하였으며 그 결과는 다음과 같다. O2/C비가 높아질수록 메탄과 이산화탄소의 전환이 증가하였다. 전체가스공급량은 임의 특정 값에서 최대의 전환을 보였다. CO2/CH4비 감소할 때 전환율이 증가되었다. 이상의 결과로 볼 때 본 연구에서 새로이 제안된 플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산의 가능성이 확인되었다. 그리고 O2/C비가 0.8이고 CO2/CH4를 0.67로 하여 전체가스공급량을 40 L min-1 (VHSV = 1.37)로 공급할 경우 이산화탄소와 메탄 전환이 최대가 되어 생성가스 중 양질의 연료인 수소와 일산화탄소로의 전환이 최대를 보였다.
The use of fossil fuel and biogas production causes air pollution and climate change problems. Research endeavors continue to focus on converting methane and carbon dioxide, which are the major causes of climate change, into quality energy sources. In this study, a novel plasma-carbon converter was proposed to convert biogas into high quality gas, which is linked to photovoltaic and wind power and which poses a problem on generating electric power continuously. The characteristics of conversion and gas production were investigated to find a possibility for biogas conversion, involving parametric tests according to the change in the main influence variables, such as O2/C ratio, total gas feed rate, and CO2/CH4 ratio. A higher O2/C ratio gave higher conversions of methane and carbon dioxide. Total gas feed rate showed maximum conversion at a certain specified value. When CO2/CH4 feed ratio was decreased, both conversions increased. As a result, the production of solar fuel by plasma oxidation destruction-carbon material gasification conversion, which was newly suggested in this study, could be known as a possibly useful technology. When O2/C ratio was 0.8 and CO2/CH4 was 0.67 while the total gas supply was at 40 L min-1 (VHSV = 1.37), the maximum conversions of carbon dioxide and methane were achieved. The results gave the highest production for hydrogen and carbon dioxide which were high-quality fuel.
  1. Goede APH, Bongers WA, In EPJ web of conferences, 79, 01005 (2014).
  2. Pachauri RK, Meyer LA, Geneva, Switzerland. IPCC., (2014).
  3. Tippayawrong N, Chaiya E, Thanompongchart P, Khongkrapan P, Procedia Engineering, 118, 120 (2015)
  4. Snoeckx R, Bogaerts A, Chem. Soc. Rev., 46(19), 5805 (2017)
  5. Song HS, Kwon SJ, Epling WS, Croiset E, Nam SC, Yi KB, Clean Technol., 20(2), 189 (2014)
  6. Hong JH, Ha HJ, Han JD, Clean Technol., 18(1), 95 (2012)
  7. Zhang H, Li XD, Zhu FS, Cen KF, Du CM, Tu X, Chem. Eng. J., 310, 144 (2017)
  8. Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O, Prog. Energy Combust. Sci., 25(2), 211 (1999)
  9. Zhu JJ, Gao JL, Li ZS, Ehn A, Alden M, Larsson A, Kusano Y, Appl. Phys. Lett., 105, 234102 (2014)
  10. Zhu JJ, Ehn A, Gao JL, Kong CD, Alden M, Salewski M, Leipold F, Kusano Y, Li ZS, Opt. Express., 25(17), 20243 (2017)
  11. Zhu JJ, Gao JL, Ehn A, Alden M, Li ZS, Moseec D, Kusano Y, Salewski M, Alpers A, Gritzmann P, Schwenk M, Appl. Phys. Lett., 106, 044101 (2015)
  12. Ju YG, Sun WT, Prog. Energy Combust. Sci., 48, 21 (2015)
  13. Rostrupnielsen JR, Hansen JHB, J. Catal., 144(1), 38 (1993)
  14. Zhang Z, Verykios XE, Appl. Catal. A: Gen., 138(1), 109 (1999)
  15. Wu J, Fang Y, Wang Y, Zhang DK, Energ. Fuel., 19(2), 512 (2005)
  16. Ju YG, Sun WT, Prog. Energy Combust. Sci., 48, 21 (2015)
  17. Song HG, Chun YN, J. Mater. Cycles Waste., 22(1), 176 (2020)
  18. Dominguez A, Fernandez Y, Fidalgo B, Pis JJ, Menendez JA, Energ. Fuel., 21, 2066 (2007)
  19. Chun YN, Song HG, Energy, 190, 1 (2020)