화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.84, 202-216, April, 2020
Influence of synthesis parameters on composition and morphology of electrodeposited Zn-Sb thin films
E-mail:
The influence of bath concentration, electrodeposition potential, and hydrodynamic conditions in the electrolytic cell on the morphology, chemical composition, and crystal structure of synthesized Zn, Sb, and Zn-Sb thin films was demonstrated based on FE-SEM, EDS, XRD, and Raman measurements. It was found that an increase in the working electrode potential leads to the formation of thin films with a higher atomic percentage (at.%) of zinc. Contrary, increasing SbCl3 concentration in the citrate bath and application of electrolyte stirring, lead to the preferential electrodeposition of thin films containing a higher content of antimony. From the point of view of thermoelectric applications, the most promising material was that containing the ZnSb crystal phase with the Zn/Sb atomic ratio of 1. The best results for electrodeposition of Zn-Sb thin films were observed at -1.5 V vs. Ag/AgCl (3 M KCl) in the citrate bath containing 0.045 M ZnCl2 and 0.045 M SbCl3 in the absence of electrolyte stirring. As a result, an amorphous ZnSb thin film with the Zn/Sb atomic ratio of 1.03 was obtained. The sample with a composition very close to stoichiometric ZnSb was annealed in an inert atmosphere in order to transform it into a crystalline thin film.
  1. Seebeck TJ, Oettingen A, Magnetische polarisation der metalle und erze durch temperatur-differenz 1822-1823. Hrsg. (1895).
  2. Bhatia D, Bairagi S, Goel S, Jangra M, J. Pharm. Bioallied. Sci., 2, 51 (2010)
  3. Okamura C, Ueda T, Hasezaki K, Mater. Trans., 51, 860 (2010)
  4. Saadat S, Tay YY, Zhu J, Teh PF, Maleksaeedi S, Shahjamali MM, Shakerzadeh M, Srinivasan M, Tay BY, Hng HH, Ma J, Yan Q, Chem. Mater., 23, 1032 (2011)
  5. Lahiri A, Endres F, J. Electrochem. Soc., 164(9), D597 (2017)
  6. Liao S, Sun Y, Wang J, Cui H, Wang CX, Electrochim. Acta, 211, 11 (2016)
  7. Bellucci A, Mastellone M, Girolami M, Orlando S, Medici L, Mezzi A, Kaciulis S, Polini R, Trucchi DM, Appl. Surf. Sci., 418, 589 (2017)
  8. Roduner E, Chem. Soc. Rev., 35, 583 (2006)
  9. Guo Q, Luo S, Funct. Mater. Lett., 8, 155002 (2015)
  10. Bottger PHM, Diplas S, Flage-Larsen E, Prytz O, Finstad TG, J. Phys. Condens. Matter, 23, 265502 (2011)
  11. Xiao F, Hangarter C, Yoo B, Rheem Y, Lee KH, Myung NV, Electrochim. Acta, 53(28), 8103 (2008)
  12. Zhang LT, Tsutsui M, Ito K, Yamaguchi M, J. Alloy. Compd., 358, 252 (2003)
  13. Amsler M, Goedecker S, Zeier WG, Snyder GJ, Wolverton C, Chaput L, Chem. Mater., 28, 2912 (2016)
  14. Sun Y, Christensen M, Johnsen S, Nong NV, Ma Y, Sillassen M, Zhang E, Palmqvist AEC, Bottiger J, Iversen BB, Adv. Mater., 24(13), 1693 (2012)
  15. Lin JP, Li XD, Qiao GJ, Wang Z, Carrete J, Ren Y, Ma LZ, Fei YJ, Yang BF, Lei L, Li J, J. Am. Chem. Soc., 136(4), 1497 (2014)
  16. Mirhosseini M, Rezania A, Rosendahl L, Iversen BB, Energy Procedia., 142, 519 (2017)
  17. Song L, Blichfeld AB, Zhang J, Kasai H, Iversen BB, J. Mater. Chem. A., 6, 4079 (2018)
  18. Komiya H, Masumoto K, Fan HY, Phys. Rev., 133, A1679 (1964)
  19. Chitroub M, Besse F, Scherrer H, J. Alloy. Compd., 460, 90 (2008)
  20. Bottger PHM, Valset K, Deledda S, Finstad TG, J. Electron. Mater., 39, 1583 (2010)
  21. Pothin R, Ayral RM, Berche A, Granier D, Rouessac F, Jund P, Chem. Eng. J., 299, 126 (2016)
  22. Pedersen BL, Iversen BB, Appl. Phys. Lett., 92, 161907 (2008)
  23. Yin H, Christensen M, Pedersen BL, Nishibori E, Aoyagi S, Iversen BB, J. Electron. Mater., 39, 1957 (2010)
  24. Fan P, Fan W, Zheng Z, Zhang Y, Luo J, Liang G, Zhang D, J. Mater. Sci.: Mater. Electron., 25, 5060 (2014)
  25. Lin J, Qiao G, Ma L, Ren Y, Yang B, Fei Y, Lei L, Appl. Phys. Lett., 102, 163902 (2013)
  26. Almessiere MA, Slimani Y, Gungunes H, Baykal A, Trukhanov SV, Trukhanov AV, Nanomaterials, 9, 1 (2018)
  27. Almessiere MA, Trukhanov AV, Slimani Y, You KY, Trukhanov SV, Trukhanova EL, Esa F, Sadaqat A, Chaudhary K, Zdorovets M, Baykal A, Nanomaterials, 9, 1 (2019)
  28. Trukhanov A, Panina L, Trukhanov S, Turchenko V, Salem M, Chinese Phys. B., 25, 016102 (2016)
  29. Trukhanov AV, Kostishyn VG, Panina LV, Korovushkin VV, Turchenko VA, et al., J. Alloy. Compd., 754, 247 (2018)
  30. Hruby A, Berankova J, Miskova V, Phys. Stat. Sol., 3, 289 (1963)
  31. Zheng ZH, Fan P, Liu PJ, Luo JT, Cai XM, Liang GX, Zhang DP, Ye F, Li YZ, Lin QY, Appl. Surf. Sci., 292, 823 (2014)
  32. Grabchikov SS, Trukhanov AV, Trukhanov SV, Kazakevich IS, Solobay AA, Erofeenko VT, Vasilenkov NA, Volkova OS, Shakin A, J. Magn. Magn. Mater., 398, 49 (2016)
  33. Trukhanov AV, Grabchikov SS, Solobai AA, Tishkevich DI, Trukhanov SV, Trukhanova EL, J. Magn. Magn. Mater., 443, 142 (2017)
  34. Tishkevich DI, Grabchikov SS, Tsybulskaya LS, Shendyukov VS, Perevoznikov SS, Trukhanov SV, Trukhanova EL, Trukhanov AV, Vinnik DA, J. Alloy. Compd., 735, 1943 (2018)
  35. Tishkevich DI, Grabchikov SS, Lastovskii SB, Trukhanov SV, Zubar TI, Vasin DS, Trukhanov AV, J. Alloy. Compd., 749, 1036 (2018)
  36. Hnida KE, Marzec M, Wlazlak E, Chlebda D, Szacilowski K, Gilek D, Sulka GD, Przybylski M, Electrochim. Acta, 304, 396 (2019)
  37. Gilek D, Brzozka A, Hnida KE, Sulka GD, Electrochim. Acta, 302, 352 (2019)
  38. Gomez E, Pane S, Valles E, Electrochim. Acta., 51, 146 (2005)
  39. Haller S, Jung J, Rousset J, Lincot D, Electrochim. Acta, 82, 402 (2012)
  40. Rasmussen AA, Jensen JAD, Horsewell A, Somers MAJ, Electrochim. Acta, 47(1-2), 67 (2001)
  41. Mann O, Freyland W, Electrochim. Acta, 53(2), 518 (2007)
  42. Yamamoto H, Iguchi R, Morishita M, ECS Trans., 16, 191 (2009)
  43. Abbott AP, Ryder KS, Konig U, Transactions of the IMF., 86, 196 (2008).
  44. Aaboubi O, Douglade J, Abenaqui X, Boumedmed R, VonHoff J, Electrochim. Acta, 56(23), 7885 (2011)
  45. Youssef KM, Koch CC, Fedkiw PS, Electrochim. Acta, 54(2), 677 (2008)
  46. Oren Y, Landau U, Electrochim. Acta, 27, 739 (1982)
  47. Loto CA, Asian J. Appl. Sci., 5, 314 (2012)
  48. Sadana YN, Singh JP, Kumar R, Surf. Technol., 24, 319 (1985)
  49. Ward LC, Stickney JL, Phys. Chem. Chem. Phys., 3, 3364 (2001)
  50. Bergmann MEH, Koparal AS, Chem. Eng. Technol., 30(2), 242 (2007)
  51. Hairin ALN, Romainor MN, Othman R, Daud FDM, IOP Conf. Ser.: Mater. Sci. Eng., 290, 012010 (2018)
  52. Brenner A, Electrodeposition of Alloys: Principles and Practice, Elsevier, 2013.
  53. Horcas I, Fernandez R, Gomez-Rodriquez JM, Colchero J, Gomez-Herrero J, Baro AM, Rev. Sci. Instrum.,013705 (2007).
  54. Image J, National Institute of Mental Health, Bethesda, USA, 1997.
  55. Zheng Z, Fan P, Luo J, Liang G, Liu P, Zhang D, J. Alloy. Compd., 668, 8 (2016)
  56. Hasaka M, Morimura T, Nakashima H, J. Electron. Mater., 41, 1193 (2012)
  57. ICDD (2016). PDF-4+ 2016 (Database), edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, (2019).
  58. Tella M, Pokrovski GS, Chem. Geol., 292-293, 57 (2012)
  59. Kazimierczak H, Ozga P, Surf. Sci., 607, 33 (2013)
  60. Slupska M, Ozga P, Electrochim. Acta, 141, 149 (2014)
  61. Kazimierczak H, Ozga P, Jałowiec A, Kowalik R, Surf. Coat. Technol., 240, 311 (2014)
  62. Capone S, De Robertis A, De Stefano C, Sammartano S, Talanta, 33, 763 (1986)
  63. Hu X, He M, J. Environ. Sci., 56, 87 (2017)
  64. Oulmas C, Mameri S, Boughrara D, Kadri A, Delhalle J, Mekhalif Z, Benfedda B, Heliyon., 5, e02058 (2019)
  65. Lide DR, Taylor & Francis, CRC Handbook of Chemistry and Physics, 89th edition, (2008).
  66. Torrent-Burgues J, Guaus E, J. Appl. Electrochem., 37(5), 643 (2007)
  67. Ortiz-Aparicio JL, Meas Y, Trejo G, Ortega R, Chapman TW, Chainet E, J. Appl. Electrochem., 43(3), 289 (2013)
  68. Raeissi K, Saatchi A, Golozar MA, J. Appl. Electrochem., 33(7), 635 (2003)
  69. Raeissi K, Saatchi A, Golozar MA, Szpunar JA, J. Appl. Electrochem., 34(12), 1249 (2004)
  70. Wang RY, Kirk DW, Zhang GX, J. Electrochem. Soc., 153(5), C357 (2006)
  71. Sadana YN, Kumar R, Surf. Technol., 11, 37 (1980)
  72. Hessam R, Najafisayar P, Int. J. Hydrog. Energy, 44(41), 22851 (2019)
  73. Li DY, Szpunar JA, Electrochim. Acta, 42(1), 47 (1997)
  74. Nikolic ND, Popov KI, Pavlovic LJ, Pavlovic MG, J. Electroanal. Chem., 588(1), 88 (2006)
  75. Mamaghani KR, Naghib SM, Int. J. Electrochem. Sci., 5023 (2017).
  76. Chang TFM, Sone M, Shibata A, Ishiyama C, Higo Y, Electrochim. Acta, 55(22), 6469 (2010)
  77. Yu JK, Sun H, Zhao LL, Wang YH, Yu MQ, Luo HL, Xu ZF, Matsugi K, Bull. Mat. Sci., 40, 577 (2017)
  78. Li C, Wang G, Qi D, Shi D, Zhang X, Wang H, Sci. Rep., 7, 8644 (2017)
  79. Rouessac F, Ayral RM, J. Alloy. Compd., 530, 56 (2012)
  80. Smirnov DV, Mashovets DV, Pasquier S, Leotin J, Puech P, Landa G, Roznovan YV, Semicond. Sci. Technol., 9, 333 (1994)
  81. Wang G, Li C, Shi D, Zhang Y, Shen X, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 205, 551 (2018)
  82. Fischer A, Scheidt EW, Scherer W, Benson DE, Wu Y, Eklof D, Haussermann U, Phys. Rev. B, 91, 224309 (2015)
  83. Wang M, Jiang L, Kim EJ, Hahn SH, RSC Adv., 5, 87496 (2015)
  84. Langford JI, Wilson AJC, J. Appl. Crystallogr., 11, 102 (1978)
  85. Trukhanov SV, Trukhanov AV, Szymczak H, Szymczak R, Baran M, J. Phys. Chem. Solids, 4, 675 (2006)
  86. Trukhanov SV, Trukhanov AV, Stepin SG, Szymczak H, Botez CE, Phys. Solid State., 50, 886 (2008)